首页> 外文期刊>Modelling and simulation in materials science and engineering >Applications of scale-bridging to computational materials design
【24h】

Applications of scale-bridging to computational materials design

机译:比例桥梁在计算材料设计中的应用

获取原文
获取原文并翻译 | 示例
       

摘要

Computational materials design requires first the ability to predict the crystal structure and phase stability of yet to be discovered compounds and second the evaluation and prediction of materials properties and performance on the application scale. For many engineering applications processing for the control of microstructural elements is the key factor for achieving the desired performance on the continuum scale. From a modelling perspective, this second step in materials design requires an inherently scale-bridging approach: the quantum world that shows up in the bond formation between atoms needs to be coarse grained for a classical description of atomic interactions, then vast numbers of discrete atomic trajectories must form the basis for a continuum description of the material. This poses two questions of immediate relevance: how can the transition from a quantum mechanical description of the interatomic interaction to point-like atoms that interact with classical potentials be achieved in a systematic way? Next, how can results from atomistic simulations be used to devise and parametrize models on the continuum scale? In this focus collection, aspects of these two critical questions are discussed and reviewed. Magnetism and the repulsive contribution to the interatomic interaction is used as an example to demonstrate the coarse graining of a quantum mechanical description into a classical model. Phase boundaries are then used to illustrate the interface between atomistic and continuum modelling hierarchies. Phase-transformation modelling and continuum mechanics have to be unified and long-range transport due to convection has to be taken into account on the microscopic level. Aspects of numerical efficiency and a consistent constitutive framework are also addressed. The following special section of this journal has been compiled on the occasion of the five year anniversary of the foundation of ICAMS, the ‘Interdisciplinary Centre for Advanced Materials Simulation’ at the Ruhr-Universit?t Bochum, Germany. Researchers from ICAMS and other leading institutions around the world were invited to contribute to this collection, which includes the following eight focus papers and a topical review, ‘Atomistic simulations of grain and interphase boundary mobility’. All papers were peer-reviewed following the standard procedure established by the Editorial Board of Modelling and Simulation in Materials Science and Engineering. It would be impossible for this collection to serve as a comprehensive overview of the rapidly growing field of scale-bridging materials simulations, however it is our hope that it brings together key aspects that need to be considered for materials design from ‘atoms to components’.
机译:计算材料的设计首先需要能够预测尚未发现的化合物的晶体结构和相稳定性,其次需要在应用规模上评估和预测材料的性能和性能。对于许多工程应用而言,控制微观结构元素的过程是在连续规模上实现所需性能的关键因素。从建模的角度来看,材料设计的第二步需要固有的比例桥接方法:为了经典描述原子相互作用,需要粗化显示原子间键形成的量子世界,然后再进行大量离散原子的描述。轨迹必须构成连续描述材料的基础。这提出了两个直接相关的问题:如何以系统的方式实现从原子间相互作用的量子力学描述到与经典势能相互作用的点状原子的转变?接下来,如何将原子模拟的结果用于在连续统规模上设计和参数化模型?在本专题集中,将讨论和审查这两个关键问题的各个方面。以磁性和对原子间相互作用的排斥作用为例,说明了将量子力学描述粗化为经典模型的过程。然后使用相界来说明原子建模和连续建模层次之间的接口。相变建模和连续体力学必须统一,并且必须在微观层面考虑由于对流引起的远距离迁移。还讨论了数值效率和一致的本构框架方面。在ICAMS成立五周年之际,该期刊的以下特殊部分已编撰完毕:ICAMS是位于德国波鸿的鲁尔大学的“先进材料模拟跨学科中心”。来自ICAMS和全球其他领先机构的研究人员应邀为该收藏做出了贡献,其中包括以下八篇重点论文和主题评论“晶粒和相间边界迁移率的原子模拟”。所有论文均按照材料科学与工程建模与仿真编辑委员会制定的标准程序进行了同行评审。该集合不可能作为快速发展的比例桥接材料模拟领域的全面概述,但是我们希望它汇集了从“原子到组件”的材料设计中需要考虑的关键方面。 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号