...
首页> 外文期刊>Modelling and simulation in materials science and engineering >Analyses of the role of the second phase SiC particles in microstructure dependent fracture resistance variation of SiC-Si3N4 nanocomposites
【24h】

Analyses of the role of the second phase SiC particles in microstructure dependent fracture resistance variation of SiC-Si3N4 nanocomposites

机译:第二相SiC颗粒在SiC-Si3N4纳米复合材料的微观结构相关的抗断裂性变化中的作用分析

获取原文
获取原文并翻译 | 示例

摘要

One of the primary factors affecting the failure in high strength silicon carbide (SiC)-silicon nitride (Si3N4) nanocomposites is the placement of spherical nano-sized SiC particles in micro-sized Si3N4 grains. In order to analyze this issue, the cohesive finite element method (CFEM) based dynamic fracture analyses of SiC-Si3N4 nanocomposites at two different loading rates (0.5 and 2ms(-1)) with an explicit account of the lengthscales associated with Si3N4 grain boundaries (GBs) (sizescale 100 nm), SiC particles (sizescale 200-300 nm), and Si3N4 grains (sizescale 0.8-1.5 mu m) are performed. A range of CFEM meshes with selective placement of second phase particles placed exclusively along GBs, exclusively inside Si3N4 grains, and along GBs as well as inside Si3N4 grains are generated for analyses. Analyses of the damage progression and stress distribution as a function of microstructural morphology indicate that high strength and relatively small sized SiC particles act as stress concentration sites in Si3N4 matrix. The dominant mode of fracture in all microstructures, therefore, is intergranular Si3N4 matrix cracking. Crack density evolution and fracture energy dissipation results show loading rate dependence of failure with the role of phase morphology becoming prominent at the lower loading rate. Contrary to the belief that microstructures with second phase particles lying exclusively along GBs are the strongest against fracture, microstructures with SiC particles lying along GBs as well as inside Si3N4 grains in locations near GBs are found to be the strongest.
机译:影响高强度碳化硅(SiC)-氮化硅(Si3N4)纳米复合材料失效的主要因素之一是将球形纳米尺寸SiC颗粒放置在微米级Si3N4晶粒中。为了分析此问题,基于内聚有限元方法(CFEM)的SiC-Si3N4纳米复合材料在两种不同的加载速率(0.5和2ms(-1))下的动态断裂分析,并明确考虑了与Si3N4晶界相关的长度尺度进行(GB)(尺寸为100nm),SiC颗粒(尺寸为200-300nm)和Si 3 N 4晶粒(尺寸为0.8-1.5μm)。生成了一系列CFEM网格,其中选择性地放置了仅沿GBs,仅沿Si3N4晶粒内部以及沿GBs以及沿Si3N4晶粒内部放置的第二相粒子进行分析。损伤进展和应力分布作为微观结构形态的函数的分析表明,高强度和相对较小尺寸的SiC颗粒充当Si3N4基体中的应力集中点。因此,在所有微观结构中,断裂的主要方式是晶间Si3N4基体开裂。裂纹密度演化和断裂能耗散结果表明,失效的加载速率依赖性与相形态的作用在较低的加载速率下更加突出。与仅沿GBs分布的第二相颗粒的显微组织对断裂最强的看法相反,沿GBs分布的SiC颗粒以及在GBs附近的Si3N4晶粒内部的显微组织被发现是最强的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号