首页> 外文学位 >Processing, Microstructure, and Mechanical Properties of Si3N4/SiC Nanocomposites from Precursor Derived Ceramics.
【24h】

Processing, Microstructure, and Mechanical Properties of Si3N4/SiC Nanocomposites from Precursor Derived Ceramics.

机译:先驱体衍生陶瓷制备的Si3N4 / SiC纳米复合材料的加工,微结构和力学性能。

获取原文
获取原文并翻译 | 示例

摘要

Polymer-derived ceramics (PDCs) provides a unique processing route to create Si3N4/SiC composites. Silazane precursor polyureasilazane (Ceraset PURS20) produce's an amorphous SiCN ceramic at temperatures of ~800 -- 1200 °C and crystallizes to a Si3N4/SiC nanocomposite at temperatures >1500 °C. A novel processing technique was developed where crosslinked polymers were heat-treated in a reactive NH3 atmosphere to control the stoichiometry of the pyrolyzed SiCN ceramic. Using this technique processing parameters were established to produce SiCN powders that resulted in nanocomposites with approximately 0, 5, 10, 20 and 30 vol. % SiC. Lu2O3 was added to these powders as a sintering aid and were densified using Hot Pressing and Field Assisted Sintering. The sintered nanocomposites resulted in microstructures with multiple-length scales. These length-scales included Si3N4 (0.1 -- 5 microm), SiC (10 -- 100 nm) and the intergranular grain boundary phase (<1 nm). Using a combination of SEM and TEM it was possible to quantify some of these microstructural features such as the size and location of the SiC. Hardness and fracture toughness testing was conducted to compared the room temperature mechanical properties of these resultant microstructures. This research was intended to develop robust processing approaches that can be used to control the nanostructures of Si3N4/SiC composites with significant structural features at multiple length scales. The control of their features and the investigation of their affect on the properties of composites can be used to simulate the affect of the structure on properties. These models can then be used to design optimal microstructures for specific applications.
机译:聚合物衍生的陶瓷(PDC)提供了独特的工艺路线来制造Si3N4 / SiC复合材料。硅氮烷前体聚脲硅氮烷(Ceraset PURS20)在约800-1200°C的温度下产生一种非晶态的SiCN陶瓷,并在> 1500°C的温度下结晶成Si3N4 / SiC纳米复合材料。开发了一种新的加工技术,其中将交联的聚合物在反应性NH3气氛中进行热处理,以控制热解的SiCN陶瓷的化学计量。使用该技术,可以建立工艺参数以生产SiCN粉末,从而产生约0、5、10、20和30 vol的纳米复合材料。 SiC含量将Lu 2 O 3作为烧结助剂添加到这些粉末中,并使用热压和现场辅助烧结法进行致密化。烧结的纳米复合材料产生具有多个长度尺度的微观结构。这些长度尺度包括Si3N4(0.1-5微米),SiC(10-100 nm)和晶间晶界相(<1 nm)。结合使用SEM和TEM,可以量化某些微观结构特征,例如SiC的尺寸和位置。进行了硬度和断裂韧性测试,以比较这些所得微结构的室温机械性能。这项研究旨在开发可用于控制具有多种长度尺度上显着结构特征的Si3N4 / SiC复合材料纳米结构的稳健加工方法。通过控制其特征以及研究其对复合材料性能的影响,可以模拟结构对性能的影响。然后,这些模型可用于设计针对特定应用的最佳微结构。

著录项

  • 作者

    Strong, Kevin Thomas, Jr.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Materials science.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 137 p.
  • 总页数 137
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:52:20

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号