首页> 外文期刊>Modelling and simulation in materials science and engineering >Modeling morphology evolution and densification during solid-state sintering via kinetic Monte Carlo simulation
【24h】

Modeling morphology evolution and densification during solid-state sintering via kinetic Monte Carlo simulation

机译:通过动力学蒙特卡洛模拟对固态烧结过程中的形态演变和致密化进行建模

获取原文
获取原文并翻译 | 示例
       

摘要

Microstructure control is an important subject in solid-state sintering and plays a crucial role in determining post-sintering material properties, such as strength, toughness and density, to name but a few. The preponderance of existing numerical sintering simulations model the morphology evolution and densification process driven by surface energy minimization by either dilating the particles to be sintered or using the vacancy annihilation model. Here, we develop a novel kinetic Monte Carlo model to model morphology evolution and densification during free sintering. Specifically, we derive analytically a heterogeneous densification rate of the sintering system by considering sintering stress induced mass transport. The densification of the system is achieved by modeling the sintering stress induced mass transfer via applying effective particle displacement and grain boundary migration with an efficient two-step iterative interfacial energy minimization procedure. Coarsening is also considered in the later stages of the simulations. We show that our model can accurately capture the diffusion-induced evolution of particle morphology, including neck formation and growth, as well as realistically reproduce the overall densification of the sintered material. The computationally obtained dynamic density evolution curves for both two-particle sintering and manyparticle material sintering are found to be in excellent agreement with the corresponding experimental master sintering curves. Our model can be utilized to control a variety of structural and physical properties of the sintered materials, such as the pore size and final material density.
机译:微结构控制是固态烧结中的重要课题,在确定烧结后材料的性能(例如强度,韧性和密度)方面起着至关重要的作用。现有的数值烧结模拟的优势在于通过膨胀待烧结的颗粒或使用空位an灭模型来模拟由表面能最小化驱动的形态演变和致密化过程。在这里,我们开发了一种新颖的动力学蒙特卡洛模型,以模拟自由烧结过程中的形态演变和致密化。具体而言,我们通过考虑烧结应力引起的传质来分析得出烧结系统的异质致密化速率。通过使用有效的两步迭代界面能量最小化过程应用有效的颗粒位移和晶界迁移,对烧结应力引起的传质进行建模,从而实现系统的致密化。在模拟的后期也考虑了粗化。我们表明,我们的模型可以准确地捕获扩散诱导的颗粒形态演化,包括颈部的形成和生长,以及真实地再现烧结材料的整体致密化。通过计算获得的两颗粒烧结和多颗粒材料烧结的动态密度演化曲线与相应的实验主烧结曲线非常吻合。我们的模型可用于控制烧结材料的各种结构和物理特性,例如孔径和最终材料密度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号