首页> 外文期刊>Modelling and simulation in materials science and engineering >Modelling of macrosegregation during solidification processes using an adaptive domain decomposition method
【24h】

Modelling of macrosegregation during solidification processes using an adaptive domain decomposition method

机译:使用自适应域分解方法对凝固过程中的宏观偏析进行建模

获取原文
获取原文并翻译 | 示例
       

摘要

A numerical method for the simulation of buoyancy-induced macrosegregation during solidification processes is presented. The physical model is based on volume averaged conservation equations for energy, mass, momentum, and solute. The resulting partial differential equations are solved by a finite element method, which considers two different length-scales: on the one hand, the scale of the overall process, on the other, a small critical zone near the solidification front where solutal inhomogeneities are initiated and the fluid velocity is non-zero. A domain decomposition method using two adapted grids has been developed. The overall computational domain is discretized using a 'coarse' finite element mesh adapted to the process scale. At each time step, the energy conservation equation is solved using this discretization and new values of temperature and solid fraction are calculated at each finite element node. Based on these values, the computational domain is subdivided into three subdomains: the so-called solid, mushy, and liquid regions. The mushy subdomain corresponds to the critical zone near the solidification front and is adaptively discretized with a finer finite element mesh, whereas the liquid domain uses the initial coarse grid and the solid is no longer considered. The fluid flow and solute transport equations are then solved on the different meshes using a Dirichlet-Neurnann substructuring iterative method, together with the mortar technique to deal with the non-conforming discretizations at the subdomain interfaces. The method is applied to several test problems such as the Hebditch-Hunt macrosegregation experiment or the prediction of freckles, and the performances and limits of the approach are pointed out and discussed. [References: 64]
机译:提出了一种数值模拟凝固过程中浮力引起的宏观偏析的方法。物理模型基于能量,质量,动量和溶质的体积平均守恒方程。由此产生的偏微分方程通过有限元方法求解,该方法考虑了两个不同的长度尺度:一方面,整个过程的尺度,另一方面,在凝固前沿附近的一个小的临界区,在该处临界不均匀性开始产生。并且流体速度不为零。已经开发了使用两个自适应网格的域分解方法。使用适合于过程规模的“粗”有限元网格离散化整个计算域。在每个时间步,使用该离散化方法求解能量守恒方程,并在每个有限元节点处计算温度和固体分数的新值。根据这些值,计算域可分为三个子域:所谓的固体,糊状和液体区域。糊状的子域对应于凝固前沿附近的关键区域,并通过更精细的有限元网格进行自适应离散,而液体域使用初始的粗网格,不再考虑固体。然后,使用Dirichlet-Neurnann子结构迭代方法,再结合砂浆技术,在子域界面处求解非相容离散化问题,从而在不同的网格上求解流体流动和溶质运移方程。该方法适用于Hebditch-Hunt宏观偏析实验或雀斑预测等测试问题,指出并讨论了该方法的性能和局限性。 [参考:64]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号