首页> 外文期刊>Modelling and simulation in materials science and engineering >Determination of the crystal-melt interface kinetic coefficient from molecular dynamics simulations
【24h】

Determination of the crystal-melt interface kinetic coefficient from molecular dynamics simulations

机译:通过分子动力学模拟确定熔体界面动力学系数

获取原文
获取原文并翻译 | 示例
       

摘要

The generation and dissipation of latent heat at the moving solid-liquid boundary during non-equilibrium molecular dynamics (MD) simulations of crystallization can lead to significant underestimations of the interface mobility. In this work we examine the heat flow problem in detail for an embedded atom description of pure Ni and offer strategies to obtain an accurate value of the kinetic coefficient, mu. For free-solidification simulations in which the entire system is thermostated using a Nose-Hoover or velocity rescaling algorithm a non-uniform temperature profile is observed and a peak in the temperature is found at the interface position. It is shown that if the actual interface temperature, rather than the thermostat set point temperature, is used to compute the kinetic coefficient then mu is approximately a factor of 2 larger than previous estimates. In addition, we introduce a layered thermostat method in which several sub-regions, aligned normal to the crystallization direction, are indepently thermostated to a desired undercooling. We show that as the number of thermostats increases (i.e., as the width of each independently thermostated layer decreases) the kinetic coefficient converges to a value consistent with that obtained using a single thermostat and the calculated interface temperature. Also, the kinetic coefficient was determined from an analysis of the equilibrium fluctuations of the solid-liquid interface position. We demonstrate that the kinetic coefficient obtained from the relaxation times of the fluctuation spectrum is equivalent to the two values obtained from free-solidification simulations provided a simple correction is made for the contribution of heat flow controlled interface motion. Finally, a one-dimensional phase field model that captures the effect of thermostats has been developed. The mesoscale model reproduces qualitatively the results from MD simulations and thus allows for an a priori estimate of the accuracy of a kinetic coefficient determination for any given classical MD system. The model also elucidates that the magnitude of the temperature gradients obtained in simulations with a single thermostat depends on the length of the simulation system normal to the interface; the need for the corrections discussed in this paper can thus be gauged from a study of the dependence of the calculated kinetic coefficient on system size.
机译:在结晶的非平衡分子动力学(MD)模拟过程中,在移动的固-液边界处潜热的产生和耗散会导致界面迁移率的明显低估。在这项工作中,我们详细研究了热流问题,以了解纯Ni的嵌入原子描述,并提供了获得准确的动力学系数mu的策略。对于自由凝固模拟,其中使用Nose-Hoover或速度重缩放算法对整个系统进行恒温,观察到不均匀的温度曲线,并且在界面位置发现温度峰值。结果表明,如果使用实际界面温度而不是恒温器设定点温度来计算动力学系数,则mu大约比以前的估计值大2倍。此外,我们介绍了一种分层恒温器方法,其中将垂直于结晶方向排列的几个子区域独立地恒温至所需的过冷度。我们表明,随着恒温器数量的增加(即随着每个独立恒温层的宽度减小),动力学系数收敛到与使用单个恒温器和计算出的界面温度所获得的值一致的值。另外,通过对固液界面位置的平衡变动进行分析来确定动力学系数。我们证明,从波动谱的弛豫时间获得的动力学系数等于从自由凝固模拟获得的两个值,只要对热流控制界面运动的贡献进行简单校正即可。最后,开发了捕获恒温器作用的一维相场模型。中尺度模型定性地再现了MD模拟的结果,因此可以对任何给定的经典MD系统进行动力学系数确定的精度进行先验估计。该模型还阐明了在具有单个恒温器的模拟中获得的温度梯度的大小取决于模拟系统垂直于界面的长度。因此,可以通过对所计算的动力学系数对系统尺寸的依赖性进行研究来确定本文讨论的修正需求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号