首页> 外文期刊>Modelling and simulation in materials science and engineering >A new approach for optimizing the mechanical behavior of porous microstructures for porous materials by design
【24h】

A new approach for optimizing the mechanical behavior of porous microstructures for porous materials by design

机译:通过设计优化多孔材料的多孔微结构力学行为的新方法

获取原文
获取原文并翻译 | 示例
       

摘要

A high-fidelity generalized method of cells (HFGMC) model for the micromechanical behavior of porous and composite microstructures has been previously developed. Based on this model, a newapproach has been developed to optimize porous microstructures for 'porous materials by design'. This approach uses a combination of genetic algorithms (GA) (stochastic), coarse ( periodic) and Newton-Raphson ( gradient) optimization methods. In order to parametrize the unit cell of the microstructure for optimization and satisfy continuity conditions for the method of cells, lines of mass are used in each direction of the unit cell. Due to the nature of the optimization problem for porous microstructures, there can be multiple choices of mechanical and microstructural characteristics ( e. g. axial stress, transverse strain, and mass) for the objective function (i.e. multi-objective) implying a Pareto optimality problem. For the porous materials by design problem based on mechanical characteristics, a predescribed mechanical response was chosen for a random distribution of mass to fit via a least squares objective function. The effects of implementing the combination of optimization methods on their convergence rate and optimized solutions were then studied, as well as variations in the weighting of the objective functions. A hyperelastic material behavior, Mooney-Rivlin, typically associated with natural and synthetic rubbers, is chosen to demonstrate the ability to optimize an engineered microstructure for a new class of super-lightweight energy-absorbing materials. These results indicate that the combination of the GA, coarse search and Newton-Raphson optimization techniques can substantially accelerate the convergence rate. Also, there is significant variability in the optimized microstructure depending on the choice of the weights for the associated Pareto optimality, as well as the choice of terms for the objective function. Parametrizing the porous microstructure using multiple lines of mass can create a more complex microstructure, but commoncenters of mass should be employed to minimize mass while improving convergence rates and optimal constitutive behavior. This new approach was applied to identify microstructures for three new porous materials by design: ( a) a superelastic polymer, (b) an incompressible material and ( c) an auxetic material.
机译:先前已经开发了一种用于多孔和复合微结构的微机械行为的高保真广义单元法(HFGMC)模型。基于此模型,已开发出一种新方法来优化“设计中的多孔材料”的多孔微观结构。这种方法结合了遗传算法(GA)(随机),粗略(周期性)和Newton-Raphson(梯度)优化方法。为了对微结构的晶胞进行参数化以进行优化,并满足晶胞方法的连续性条件,在晶胞的每个方向上都使用了质量线。由于多孔微结构的最优化问题的性质,对于目标函数(即多目标)意味着帕累托最优性问题,可以有多种机械和微结构特征(例如轴向应力,横向应变和质量)选择。对于基于机械特性的设计问题的多孔材料,选择了预先描述的机械响应,用于质量的随机分布,以通过最小二乘目标函数拟合。然后研究了将优化方法组合对它们的收敛速度和优化解的影响,以及目标函数权重的变化。选择一种超弹性材料的性能,通常与天然和合成橡胶相关的Mooney-Rivlin,以展示针对新型超轻量级吸能材料优化工程微观结构的能力。这些结果表明,遗传算法,粗糙搜索和牛顿-拉夫森优化技术的结合可以大大加快收敛速度​​。而且,取决于相关帕累托最优性的权重选择以及目标函数项的选择,优化后的微观结构存在很大的可变性。使用多条质量线对多孔微结构进行参数化可以创建更复杂的微结构,但是应采用质量的公共中心来最小化质量,同时提高会聚速率和最佳本构行为。这种新方法通过设计被用于识别三种新型多孔材料的微观结构:(a)超弹性聚合物,(b)不可压缩材料,(c)膨胀材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号