...
首页> 外文期刊>materials theory >Periodic plane-wave electronic structure calculations on quantum computers
【24h】

Periodic plane-wave electronic structure calculations on quantum computers

机译:量子计算机上的周期性平面波电子结构计算

获取原文

摘要

Abstract A procedure for defining virtual spaces, and the periodic one-electron and two-electron integrals, for plane-wave second quantized Hamiltonians has been developed, and it was validated using full configuration interaction (FCI) calculations, as well as executions of variational quantum eigensolver (VQE) circuits on Quantinuum’s ion trap quantum computers accessed through Microsoft’s Azure Quantum service. This work is an extension to periodic systems of a new class of algorithms in which the virtual spaces were generated by optimizing orbitals from small pairwise CI Hamiltonians, which we term as correlation optimized virtual orbitals with the abbreviation COVOs. In this extension, the integration of the first Brillouin zone is automatically incorporated into the two-electron integrals. With these procedures, we have been able to derive virtual spaces, containing only a few orbitals, that were able to capture a significant amount of correlation. The focus in this manuscript is on comparing the simulations of small molecules calculated with plane-wave basis sets with large periodic unit cells at the Γdocumentclass12pt{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$Gamma$$end{document}-point, including images, to results for plane-wave basis sets with aperiodic unit cells. The results for this approach were promising, as we were able to obtain good agreement between periodic and aperiodic results for an LiH molecule. Calculations performed on the Quantinuum H1-1 quantum computer produced surprisingly good energies, in which the error mitigation played a small role in the quantum hardware calculations and the (noisy) quantum simulator results. Using a modest number of circuit runs (500 shots), we reproduced the FCI values for the 1 COVO Hamiltonian with an error of 11 milliHartree, which is expected to improve with a larger number of circuit runs.
机译:摘要 已经开发了一种定义平面波秒量子化哈密顿量的虚拟空间以及周期性单电子和双电子积分的程序,并使用全构型相互作用(FCI)计算以及通过Microsoft的Azure Quantum服务访问的Quantinuum离子阱量子计算机上执行变分量子特征求解器(VQE)电路进行了验证。这项工作是对一类新算法的周期系统的扩展,其中虚拟空间是通过优化小成对 CI 哈密顿量的轨道来生成的,我们将其称为与缩写 COVO 的相关优化虚拟轨道。在此扩展中,第一个布里渊区的积分自动合并到双电子积分中。通过这些程序,我们已经能够推导出仅包含几个轨道的虚拟空间,这些空间能够捕获大量的相关性。本文的重点是比较使用平面波基集计算的小分子的模拟,这些小分子具有 Γdocumentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$Gamma$$end{document}-point(包括图像)与具有非周期晶胞的平面波基集的结果。这种方法的结果很有希望,因为我们能够在LiH分子的周期性和非周期性结果之间获得良好的一致性。在Quantinuum H1-1量子计算机上进行的计算产生了令人惊讶的良好能量,其中误差缓解在量子硬件计算和(嘈杂的)量子模拟器结果中起着很小的作用。使用适量的电路运行(500 张),我们重现了 1 COVO 哈密顿量的 FCI 值,误差为 11 milliHartree,预计随着更多的电路运行,该值会有所改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号