首页> 外文期刊>The Journal of Chemical Physics >Scaling up electronic structure calculations on quantum computers: The frozen natural orbital based method of increments
【24h】

Scaling up electronic structure calculations on quantum computers: The frozen natural orbital based method of increments

机译:Scaling up electronic structure calculations on quantum computers: The frozen natural orbital based method of increments

获取原文
获取原文并翻译 | 示例
           

摘要

The method of increments and frozen natural orbital (MI-FNO) framework is introduced to help expedite the application of noisy, intermediate-scale quantum (NISQ) devices for quantum chemistry simulations. The MI-FNO framework provides a systematic reduction of the occupied and virtual orbital spaces for quantum chemistry simulations. The correlation energies of the resulting increments from the MI-FNO reduction can then be solved by various algorithms, including quantum algorithms such as the phase estimation algorithm and the variational quantum eigensolver (VQE). The unitary coupled-cluster singles and doubles VQE framework is used to obtain correlation energies for the case of small molecules (i.e., BeH2, CH4, NH3, H2O, and HF) using the cc-pVDZ basis set. The quantum resource requirements are estimated for a constrained geometry complex catalyst that is utilized in industrial settings for the polymerization of alpha-olefins. We show that the MI-FNO approach provides a significant reduction in the quantum bit (qubit) requirements relative to the full system simulations. We propose that the MI-FNO framework can create scalable examples of quantum chemistry problems that are appropriate for assessing the progress of NISQ devices. Published under an exclusive license by AIP Publishing.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号