首页> 外文期刊>Mechanics research communications >Multiscale lattice Boltzmann-finite element modelling of chloride diffusivity in cementitious materials. Part I: Algorithms and implementation
【24h】

Multiscale lattice Boltzmann-finite element modelling of chloride diffusivity in cementitious materials. Part I: Algorithms and implementation

机译:胶结材料中氯离子扩散率的多尺度晶格玻尔兹曼有限元模拟。第一部分:算法和实现

获取原文
获取原文并翻译 | 示例
       

摘要

Chloride diffusivity in cementitious materials depends on both the environmental conditions and the evolution of their underlying micro structures over a wide range of length scales. Part I of this two-part investigation presents the algorithms and implementation of a hybrid lattice Boltzmann-finite element method that combines the advantages of lattice Boltzmann method and finite element method to estimate the chloride diffusivity in cementitious materials. Lattice Boltzmann method is used as micro-scale solver to predict the time-dependent chloride diffusivity in cement paste and interfacial transition zone (ITZ), the microstructures of which are generated from the HYMOSTRUC3D model. Finite element method is selected as meso-scale solver for estimating the chloride diffusivity in mortar and concrete, which are modelled as three-phase composites consisting of aggregate, matrix and ITZ, respectively. The upscaling between the micro-scale and meso-scale simulations is accomplished by using the volume averaging technique. The representative elementary volume (REV) of cementitious materials at a lower scale is determined with a numerical-statistical approach. Chloride diffusivity in the REV of cementitious materials at a lower scale is considered as input to predict the chloride diffusivity in cementitious materials at a higher scale. The developed multiscale lattice Boltzmann-finite element modelling scheme enables to acquire a meso-scale solution, i.e. chloride diffusivity, while still capturing the micro-scale information. The simulation results and validation are presented in detail in Part II.
机译:胶结材料中氯离子的扩散性取决于环境条件以及其在很宽的长度范围内的微观结构的演变。这个由两部分组成的研究的第一部分介绍了混合晶格Boltzmann有限元方法的算法和实现,该方法结合了晶格Boltzmann方法和有限元方法的优势来估算胶结材料中氯离子的扩散率。格子Boltzmann方法用作微尺度求解器,以预测水泥浆和界面过渡区(ITZ)中随时间变化的氯化物扩散率,其微观结构由HYMOSTRUC3D模型生成。选择有限元方法作为中尺度求解器,以估计砂浆和混凝土中氯离子的扩散率,它们分别建模为由骨料,基体和ITZ组成的三相复合材料。微观和中尺度模拟之间的升级是通过使用体积平均技术完成的。胶结材料在较低尺度下的代表性基本体积(REV)是通过数值统计方法确定的。水泥材料的REV中氯离子的扩散率较低,被认为是预测水泥质材料中的氯离子扩散率较高的输入。所开发的多尺度晶格玻尔兹曼有限元建模方案能够获取中尺度解决方案,即氯化物扩散率,同时仍能捕获微尺度信息。第二部分详细介绍了仿真结果和验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号