首页> 外文期刊>Mechanics research communications >Opening and contact zones of an interface crack in a piezoelectric bimaterial under combined compressive-shear loading
【24h】

Opening and contact zones of an interface crack in a piezoelectric bimaterial under combined compressive-shear loading

机译:组合压剪载荷作用下压电双材料界面裂纹的开放和接触区

获取原文
获取原文并翻译 | 示例
           

摘要

A plane problem for a tunnel electrically permeable interface crack between two semi-infinite piezoelectric spaces is studied. A remote mechanical and electrical loading is applied. Elastic displacements and potential jumps as well as stresses and electrical displacement along the interface are presented using a sectionally holomorphic vector function. It is assumed that the interface crack includes zones of crack opening and frictionless contact. The problem is reduced to a combined Dirichlet-Riemann boundary value problem which is solved analytically. From the obtained solution, simple analytical expressions are derived for all mechanical and electrical characteristics at the interface. A quite simple transcendental equation, which determines the point of separation of open and close sections of the crack, is found. For the analysis of the obtained results, the main attention is devoted to the case of compressive-shear loading. The analytical analysis and numerical results show that, even if the applied normal stress is compressive, a certain crack opening zone exists for all considered loading values provided the shear field is present. It is found that the shear stress intensity factor at the closed crack tip and the energy release rates at the both crack tips depend very slightly on the magnitude of compressive loading. (C) 2014 Elsevier Ltd. All rights reserved.
机译:研究了两个半无限压电空间之间的隧道电导界面裂纹的平面问题。施加了远程机械和电气负载。使用截面全同矢量函数表示沿界面的弹性位移和电势跃变以及应力和电位移。假定界面裂纹包括裂纹打开和无摩擦接触的区域。该问题被简化为一个Dirichlet-Riemann组合边值问题,可以通过解析来解决。从获得的解决方案中,可以得出接口处所有机械和电气特性的简单分析表达式。找到了一个非常简单的先验方程,该方程确定了裂纹的开放部分和闭合部分的分离点。为了分析所获得的结果,主要关注于压剪载荷的情况。分析分析和数值结果表明,即使所施加的法向应力是压缩应力,只要存在剪切场,对于所有考虑的载荷值,都会存在一定的裂纹开口区域。发现闭合裂纹尖端处的剪切应力强度因子和两个裂纹尖端处的能量释放速率在很大程度上取决于压缩载荷的大小。 (C)2014 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号