首页> 外文期刊>Molecular & cellular biomechanics: MCB >Cyclic Bending Contributes to High Stress in a Human Coronary Atherosclerotic Plaque and Rupture Risk: In Vitro Experimental Modeling and Ex Vivo MRI-Based Computational Modeling Approach.
【24h】

Cyclic Bending Contributes to High Stress in a Human Coronary Atherosclerotic Plaque and Rupture Risk: In Vitro Experimental Modeling and Ex Vivo MRI-Based Computational Modeling Approach.

机译:循环弯曲导致人冠状动脉粥样硬化斑块中的高应力和破裂风险:体外实验建模和基于MRI的体外计算建模方法。

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Many acute cardiovascular syndromes such as heart attack and stroke are caused by atherosclerotic plaque ruptures which often happen without warning. MRI-based models with fluid-structure interactions (FSI) have been introduced to perform flow and stress/strain analysis for atherosclerotic plaques and identify possible mechanical and morphological indices for accurate plaque vulnerability assessment. In this paper, cyclic bending was added to 3D FSI coronary plaque models for more accurate mechanical predictions. Curvature variation was prescribed using the data of a human left anterior descending (LAD) coronary artery. Five computational models were constructed based on ex vivo MRI human coronary plaque data to assess the effects of cyclic bending, pulsating pressure, plaque structure, and axial stretch on plaque stress/strain distributions. In vitro experiments using a hydrogel stenosis model with cyclical bending were performed to observe effect of cyclical bending on flow conditions. Our results indicate that cyclical bending may cause more than 100% or even up to more than 1000% increase in maximum principal stress values at locations where the plaque is bent most. Stress increase is higher when bending is coupled with axial stretch, non-smooth plaque structure, or resonant pressure conditions (zero phase angle shift). Effects of cyclic bending on flow behaviors are more modest (21.6% decrease in maximum velocity, 10.8% decrease in flow rate, maximum flow shear stress changes were < 5%). Computational FSI models including cyclic bending, plaque components and structure, axial stretch, accurate in vivo measurements of pressure, curvature, and material properties should lead to significant improvement on stress-based plaque mechanical analysis and more accurate coronary plaque vulnerability assessment.
机译:许多急性心血管综合症,例如心脏病发作和中风,是由于动脉粥样硬化斑块破裂而引起的,这种破裂常常在没有预警的情况下发生。已引入基于MRI的具有流体-结构相互作用(FSI)的模型,以对动脉粥样硬化斑块进行流量和应力/应变分析,并确定可能的机械和形态学指标,以进行准确的斑块易损性评估。在本文中,将循环弯曲添加到3D FSI冠状动脉斑块模型中,以进行更准确的机械预测。使用人类左前降支(LAD)冠状动脉的数据来规定曲率变化。基于离体MRI人类冠状动脉斑块数据构建了五个计算模型,以评估循环弯曲,脉动压力,斑块结构和轴向拉伸对斑块应力/应变分布的影响。使用具有周期性弯曲的水凝胶狭窄模型进行体外实验,以观察周期性弯曲对流动条件的影响。我们的结果表明,周期性弯曲可能会导致斑块最弯曲的位置处的最大主应力值增加超过100%,甚至超过1000%。当弯曲与轴向拉伸,不光滑的斑块结构或共振压力条件(零相角位移)结合时,应力增加会更高。循环弯曲对流动行为的影响较小(最大速度降低21.6%,流速降低10.8%,最大流动剪切应力变化<5%)。 FSI计算模型包括循环弯曲,菌斑成分和结构,轴向拉伸,体内压力,曲率和材料特性的准确测量,应导致基于应力的菌斑力学分析和更准确的冠状动脉斑块易损性评估得到显着改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号