...
首页> 外文期刊>Mineralogical Magazine >Actinides and radiation effects: impact on the back-end of the nuclear fuel cycle
【24h】

Actinides and radiation effects: impact on the back-end of the nuclear fuel cycle

机译:in系元素和辐射效应:对核燃料循环后端的影响

获取原文
获取原文并翻译 | 示例

摘要

During the past 70 years, more than 2000 metric tonnes of Pu, and substantial quantities of the 'minor' actinides such as Np, Am and Cm, have been generated in nuclear reactors. Some of these transuranium elements can be a source of energy in fission reactions (e.g. ~(239)Pu), a source of fissile material for nuclear weapons (e.g. ~(239)Pu and Np), and of environmental concern because of their long half-lives and radiotoxicity (e.g. ~(239)Pu and ~(237)Np). There are two basic strategies for the disposition of these transuranium elements: (1) to 'burn' or fission the actinides using nuclear reactors or accelerators; (2) to dispose of the actinides directly as spent nuclear fuel or to 'sequester' the actinides in chemically durable, radiation-resistant materials that are also suitable for geological disposal. For the latter strategy, there has been substantial interest in the use of actinide-bearing minerals, especially isometric pyrochlore, A_2B_2O_7 (A = rare earths; B = Ti, Zr, Sn, Hf), for the immobilization of actinides, particularly plutonium, both as inert matrix fuels and nuclear waste forms. Systematic studies of rare-earth pyrochlores have led to the discovery that certain compositions (B = Zr, Hf) are stable to very high doses of á-decay event damage. Recent developments in the understanding of the properties of actinide-bearing solids have opened up new possibilities for the design of advanced nuclear materials that can be used as fuels and waste forms. As an example, the amount of radiation damage that accumulates over time can be controlled by the selection of an appropriate composition for the pyrochlore and a consideration of the thermal environment of disposal. In the case of deep borehole disposal (3-5 km), the natural geothermal gradient may provide enough heat to reduce the amount of accumulated radiation damage by thermal annealing.
机译:在过去的70年中,核反应堆中已经产生了2000多吨的Pu,以及大量的Np,Am和Cm等“次要” act系元素。这些铀元素中的某些元素可能是裂变反应的能量来源(例如〜(239)Pu),核武器的裂变材料来源(例如〜(239)Pu和Np),并且由于它们的长寿命而引起环境关注半衰期和放射毒性(例如〜(239)Pu和〜(237)Np)。处理这些铀元素有两种基本策略:(1)使用核反应堆或加速器“燃烧”或裂变act系元素; (2)将the系元素直接作为废核燃料处理,或将equ系元素“隔离”在化学耐用,耐辐射的材料中,这些材料也适合地质处理。对于后一种策略,使用act系元素的矿物,特别是等距烧绿石A_2B_2O_7(A =稀土; B = Ti,Zr,Sn,Hf)来固定of系元素,特别是p,既是惰性基质燃料又是核废料。稀土烧绿石的系统研究导致发现某些组合物(B = Zr,Hf)对很高剂量的á-衰变事件稳定。在了解含of系元素的固体的性质方面的最新进展为设计可用作燃料和废物形式的先进核材料开辟了新的可能性。例如,可以通过选择用于烧绿石的合适成分以及考虑到处置的热环境来控制随时间累积的辐射损伤的量。在深井眼处理(3-5公里)的情况下,自然地热梯度可能会提供足够的热量,以减少因热退火而造成的累积辐射破坏。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号