...
首页> 外文期刊>Mineralogical Magazine >Pressure-induced transformations in deep mantle and core minerals
【24h】

Pressure-induced transformations in deep mantle and core minerals

机译:压力引起的深部地幔和核心矿物的转变

获取原文
获取原文并翻译 | 示例

摘要

Recent experimental and theoretical studies provide new insight into the variety of high-pressuretransformations in minerals that comprise the Earth's deep mantle and core. Representative examples of reconstructive, displacive, electronic and magnetic transformations studied by new diamond-anvil cell techniques are examined. Despite reports for various transitions in (Mg, Fe)SiO_3-perovskite, the stability field of the orthorhombic phase expands relative to magnesiowustite + SiO_2 with increasing pressure and temperature. The partitioning of Fe and Mg between Mg-rich silicate perovskite and magnesiowustite depends strongly on pressure, temperature, bulk Fe/Mg ratio, and ferric iron content. The soft-mode transition in SiO_2 from the rutile- to CaCl_2-type structure, originally documented by X-ray powder diffraction, Raman scattering, and first-principles theory has been explored in detail by single crystal diffraction, and transitions to higher-pressure forms have been examined. The effect of H on the transformations of various nominally anhydrous phases and transitions in dense hydrous Mg-silicates are also examined. New studies of the phase diagram of FeO include the transition to rhombohedral and higher-pressure NiAs polymorphs, and provide prototypical examples of coupled structural, electronic, and magnetic transitions. High-spin/low-spin transitions in FeO have been examined by high-resolution X-ray emission spectroscopy to t50 GPa, and the results are compared with similar studies of Fe2O3 and FeS. Finally, laser-heating studies to above 150 GPa and 2500 K show that (hcp) c-Fe has a large P-T stability field. Radial XRD measurements carried out at room temperature to 220 GPa have constrained the elasticity, rheology and sound velocities of c-Fe at core pressures.
机译:最近的实验和理论研究为构成地球深层地幔和核心的矿物中各种高压转变提供了新的见识。研究了通过新的金刚石-砧座技术研究的重构,置换,电子和磁性变换的代表性示例。尽管有报道说(Mg,Fe)SiO_3-钙钛矿中存在各种过渡态,但随着压力和温度的升高,正交晶相的稳定性场相对于菱镁矿+ SiO_2有所扩大。 Fe和Mg在富含Mg的硅酸钙钛矿和菱镁矿中的分配在很大程度上取决于压力,温度,Fe / Mg体积比和三价铁含量。 SiO_2由金红石型转变为CaCl_2型结构的软模转变,最初是通过X射线粉末衍射,拉曼散射和第一性原理证明的,已通过单晶衍射进行了详细探讨,并转变为高压表格已经过检查。还研究了氢对稠密含水镁硅酸盐中各种名义上无水相的转变和转变的影响。 FeO相图的新研究包括向菱形和高压NiAs多晶型物的转变,并提供了结构,电子和磁性跃迁耦合的原型实例。 FeO的高自旋/低自旋转变已通过高分辨率X射线发射光谱法检查到t50 GPa,并将结果与​​Fe2O3和FeS的类似研究进行了比较。最后,对150 GPa和2500 K以上的激光加热研究表明(hcp)c-Fe具有较大的P-T稳定性场。在室温至220 GPa下进行的径向XRD测量已限制了芯压下c-Fe的弹性,流变性和声速。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号