...
首页> 外文期刊>Microscopy and microanalysis: The official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada >Analyzing the Effect of Capillary Force on Vibrational Performance of the Cantilever of an Atomic Force Microscope in Tapping Mode with Double Piezoelectric Layers in an Air Environment
【24h】

Analyzing the Effect of Capillary Force on Vibrational Performance of the Cantilever of an Atomic Force Microscope in Tapping Mode with Double Piezoelectric Layers in an Air Environment

机译:在空气环境中,在双压电层攻丝模式下,分析毛细管力对原子力显微镜悬臂振动性能的影响

获取原文
获取原文并翻译 | 示例

摘要

The aim of this paper is to determine the effects of forces exerted on the cantilever probe tip of an atomic force microscope (AFM). These forces vary according to the separation distance between the probe tip and the surface of the sample being examined. Hence, at a distance away from the surface (farther than d(on)), these forces have an attractive nature and are of Van der Waals type, and when the probe tip is situated in the range of a(0)d(ts)d(on), the capillary force is added to the Van der Waals force. At a distance of d(ts)a(0), the Van der Waals and capillary forces remain constant at intermolecular distances, and the contact repulsive force repels the probe tip from the surface of sample. The capillary force emerges due to the contact of thin water films with a thickness of h(c) which have accumulated on the sample and probe. Under environmental conditions a layer of water or hydrocarbon often forms between the probe tip and sample. The capillary meniscus can grow until the rate of evaporation equals the rate of condensation. For each of the above forces, different models are presented. The smoothness or roughness of the surfaces and the geometry of the cantilever tip have a significant effect on the modeling of forces applied on the probe tip. Van der Waals and the repulsive forces are considered to be the same in all the simulations, and only the capillary force is altered in order to evaluate the role of this force in the AFM-based modeling. Therefore, in view of the remarkable advantages of the piezoelectric microcantilever and also the extensive applications of the tapping mode, we investigate vibrational motion of the piezoelectric microcantilever in the tapping mode. The cantilever mentioned is entirely covered by two piezoelectric layers that carry out both the actuation of the probe tip and the measuringof its position.
机译:本文的目的是确定施加在原子力显微镜(AFM)的悬臂式探针尖端上的力的影响。这些力根据探针尖端与被检样品表面之间的距离而变化。因此,在距表面一定距离(比d(on)远)处,这些力具有吸引力,属于范德华斯型,并且当探头尖端位于a(0)d(ts)范围内时)d(on),将毛细管力加到范德华力上。在距离d(ts)a(0)处,范德华力和毛细管力在分子间距离处保持恒定,并且接触排斥力将探针尖端从样品表面击退。毛细作用力的产生是由于接触了厚度为h(c)的薄水膜,该水膜已累积在样品和探针上。在环境条件下,探针或样品之间经常会形成一层水或碳氢化合物。毛细弯液面可以生长,直到蒸发速率等于冷凝速率为止。对于上述每种力,都提供了不同的模型。表面的光滑度或粗糙度以及悬臂尖端的几何形状对施加在探针尖端上的力的建模具有显着影响。在所有模拟中,范德华力和推斥力都被认为是相同的,并且仅改变了毛细作用力,以评估该力在基于AFM的建模中的作用。因此,鉴于压电微悬臂梁的显着优点以及分接模式的广泛应用,我们研究了分接模式下压电微悬臂梁的振动运动。提到的悬臂被两个压电层完全覆盖,该两个压电层既执行探针的致动又测量其位置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号