首页> 外文期刊>Microsystem technologies >Nano-bio interface: the characterization of functional bio interface on silicon nanowire
【24h】

Nano-bio interface: the characterization of functional bio interface on silicon nanowire

机译:纳米生物界面:硅纳米线上功能性生物界面的表征

获取原文
获取原文并翻译 | 示例
           

摘要

The potential use of silicon nanowires as parts of future devices has triggered an increased interest in silicon nanowire research. The usage of COMSOL Multiphysics can improve the sensitivity of Bioelectronics to extend their stability and utility. Biosensors based on silicon nanowires promise highly sensitive dynamic label-free electrical for detection of biomolecules organic. In this paper, we investigated the effect of surface charge of the functional bio-interface of a nanowire field effect biosensor on the conductance of the nanowire through finite element calculations. The biosensor under consideration consisted of a silicon nanowire with radius of 15 nm surrounded by a 3-nm oxide layer, and it is surrounded by a 4 nm thick functional bio-interface layer. This whole system is immerged in an electrolyte and each of the layers was treated as a continuum medium characterized by the corresponding dielectric constant. First, the distribution of the electrostatic has potential in the narrower due to the surface charge. Then, the conductance of the nanowire was computed though integrating the effect of the potential on the charge carriers within the narrower and it is computed using Poisson equation with Boltzmann statistics. Finite element calculations showed the nonlinear dependence of the nanowire conductance on the bio-interface surface charge. The conclusion of the paper is the electrical potential distribution was found by solving these approximated equations.
机译:硅纳米线作为未来设备的一部分的潜在用途引发了人们对硅纳米线研究的兴趣。 COMSOL Multiphysics的使用可以提高生物电子学的灵敏度,以扩展其稳定性和实用性。基于硅纳米线的生物传感器有望提供高度灵敏的动态无标记电子,以检测有机生物分子。在本文中,我们通过有限元计算研究了纳米线场效应生物传感器功能性生物界面的表面电荷对纳米线电导的影响。所考虑的生物传感器由半径为15 nm的硅纳米线由3 nm的氧化物层围绕,并由4 nm厚的功能性生物界面层围绕。将整个系统浸入电解质中,并将各层视为具有相应介电常数特征的连续介质。首先,由于表面电荷,静电的分布具有更窄的电势。然后,通过将电势对较窄区域内的电荷载流子的影响进行积分来计算纳米线的电导率,并使用具有泊兹曼统计的泊松方程进行计算。有限元计算显示出纳米线电导率对生物界面表面电荷的非线性依赖性。本文的结论是通过求解这些近似方程式发现了电势分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号