...
首页> 外文期刊>Micron: The international research and review journal for microscopy >Modeling techniques for analysing conformational transitions in hemocyanins by small-angle scattering of X-rays and neutrons
【24h】

Modeling techniques for analysing conformational transitions in hemocyanins by small-angle scattering of X-rays and neutrons

机译:通过X射线和中子的小角度散射分析血蓝蛋白构象转变的建模技术

获取原文
获取原文并翻译 | 示例

摘要

Small-angle scattering (SAS) of X-rays (SAXS) or neutrons (SANS) enables investigation of the tertiary and quaternary structure of proteins in solution. Because ii is comparatively easy to add or remove chemical compounds from the protein solution, SAS is especially suited to investigate changes in the molecular structure caused by the binding of substrates or effectors. Although the resolution of the data is only one-dimensional and is limited in practice to above 1 nm, SAS is often applied successfully to large biomolecules (Svergun and Koch, 2002). One major challenge of the method is the reconstruction of three-dimensional models from one-dimensional data (Chacon et al., 1998; Svergun, 1999). Due to the low information content of the SAS data there is a considerable risk of creating an ambiguous model of the molecule, or to over-fit the data. Here, we present two methodical approaches with SAS to obtain information on the large cooperative hemocyanins and their structural transitions when binding the ligand dioxygen or allosteric effectors: (a) A rigid body modelling was developed and used to reconstruct n X 6-meric hemocyanins and to investigate different conformations of the oxy- and deoxystates (Hartmann and Decker, 2002) and conformation changes induced by effectors such as lactate (Hartmann et al., 200 lb). (b) A newly developed Monte-Carlo annealing algorithm (MCSAS) was applied to SAXS and SANS data to determine the conformations of the molluscan hemocyanin KLH1 in the oxy- and the deoxystate (Hartmann et al., 2001a; Hartmann and Decker, 2003; Hartmann et al., 2004).
机译:X射线(SAXS)或中子(SANS)的小角散射(SAS)使得能够研究溶液中蛋白质的三级和四级结构。由于ii比较容易从蛋白质溶液中添加或去除化合物,因此SAS特别适合研究由底物或效应物结合引起的分子结构变化。尽管数据的分辨率仅为一维,并且在实践中仅限于1 nm以上,但SAS通常成功地应用于大型生物分子(Svergun和Koch,2002)。该方法的主要挑战是从一维数据重建三维模型(Chacon等,1998; Svergun,1999)。由于SAS数据的信息量较低,因此存在创建分子模棱两可或过度拟合数据的巨大风险。在这里,我们提出了两种使用SAS的方法学方法,以获取有关大型配体血红蛋白及其结合配体双氧或变构效应子时的结构转变的信息:(a)建立了刚体模型,并用于重建n X 6-数字血蓝蛋白和为了研究不同的构象的氧化态和脱氧态(Hartmann和Decker,2002年)和效应物(如乳酸)诱导的构象变化(Hartmann等,200磅)。 (b)将新开发的蒙特卡洛退火算法(MCSAS)应用于SAXS和SANS数据,以确定软体动物血蓝蛋白KLH1在氧化态和脱氧态中的构象(Hartmann等人,2001a; Hartmann and Decker,2003 ; Hartmann等,2004)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号