...
首页> 外文期刊>Micron: The international research and review journal for microscopy >Electron microscopy and atomic force microscopy studies of chromatin and metaphase chromosome structure
【24h】

Electron microscopy and atomic force microscopy studies of chromatin and metaphase chromosome structure

机译:染色质和中期染色体结构的电子显微镜和原子力显微镜研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The folding of the chromatin filament and, in particular, the organization of genomic DNA within metaphase chromosomes has attracted the interest of many laboratories during the last five decades. This review discusses our current understanding of chromatin higher-order structure based on results obtained with transmission electron microscopy (TEM), cryo-electron microscopy (cryo-EM), and different atomic force microscopy (AFM) techniques. Chromatin isolated from different cell types in buffers without cations form extended filaments with nucleosomes visible as separated units. In presence of low concentrations of Mg~(2+), chromatin filaments are folded into fibers having a diameter of ~30 nm. Highly compact fibers were obtained with isolated chromatin fragments in solutions containing 1-2 mM Mg~(2+). The high density of these fibers suggested that the successive turns of the chromatin filament are interdigitated. Similar results were obtained with reconstituted nucleosome arrays under the same ionic conditions. This led to the proposal of compact interdigitated solenoid models having a helical pitch of 4-5 nm. These findings, together with the observation of columns of stacked nucleosomes in different liquid crystal phases formed by aggregation of nucleosome core particles at high concentration, and different experimental evidences obtained using other approaches, indicate that face-to-face interactions between nucleosomes are very important for the formation of dense chromatin structures. Chromatin fibers were observed in metaphase chromosome preparations in deionized water and in buffers containing EDTA, but chromosomes in presence of the Mg~(2+) concentrations found in metaphase (5-22 mM) are very compact, without visible fibers. Moreover, a recent cryo-electron microscopy analysis of vitreous sections of mitotic cells indicated that chromatin has a disordered organization, which does not support the existence of 30-nm fibers in condensed chromosomes. TEM images of partially denatured chromosomes obtained using different procedures that maintain the ionic conditions of metaphase showed that bulk chromatin in chromosomes is organized forming multilayered plate-like structures. The structure and mechanical properties of these plates were studied using cryo-EM, electron tomography, AFM imaging in aqueous media, and AFM-based nanotribology and force spectroscopy. The results obtained indicated that the chromatin filament forms a flexible two-dimensional network, in which DNA is the main component responsible for the mechanical strength observed in friction force measurements. The discovery of this unexpected structure based on a planar geometry has opened completely new possibilities for the understanding of chromatin folding in metaphase chromosomes. It was proposed that chromatids are formed by many stacked thin chromatin plates oriented perpendicular to the chromatid axis. Different experimental evidences indicated that nucleosomes in the plates are irregularly oriented, and that the successive layers are interdigitated (the apparent layer thickness is 5-6 nm), allowing face-to-face interactions between nucleosomes of adjacent layers. The high density of this structure is in agreement with the high concentration of DNA observed in metaphase chromosomes of different species, and the irregular orientation of nucleosomes within the plates make these results compatible with those obtained with mitotic cell cryo-sections. The multilaminar chromatin structure proposed for chromosomes allows an easy explanation of chromosome banding and of the band splitting observed in stretched chromosomes.
机译:染色质丝的折叠,特别是中期染色体内基因组DNA的组织,在过去的五十年间吸引了许多实验室的兴趣。这篇综述基于透射电子显微镜(TEM),低温电子显微镜(cryo-EM)和不同原子力显微镜(AFM)技术获得的结果,讨论了我们对染色质高阶结构的当前理解。在不含阳离子的缓冲液中从不同细胞类型中分离出的染色质形成延伸的细丝,其中核小体可见为分离的单位。在低浓度的Mg〜(2+)存在下,染色质丝被折叠成直径约30 nm的纤维。在含有1-2 mM Mg〜(2+)的溶液中获得了高度致密的纤维,并带有分离的染色质片段。这些纤维的高密度表明染色质丝的连续匝是相互交叉的。在相同的离子条件下,用重组核小体阵列获得了相似的结果。这导致提出了螺距为4-5 nm的紧凑型叉指螺线管模型。这些发现以及对高浓度核小体核心粒子聚集形成的不同液晶相中堆叠的核小体柱的观察以及使用其他方法获得的不同实验证据表明,核小体之间的面对面相互作用非常重要用于形成致密的染色质结构。在去离子水和含EDTA的缓冲液中的中期染色体制备物中观察到染色质纤维,但是在中期(5-22 mM)中发现的Mg〜(2+)浓度存在的染色体非常紧密,没有可见的纤维。此外,最近对有丝分裂细胞玻璃体切片的冷冻电子显微镜分析表明,染色质具有无序的组织,这不支持在浓缩染色体中存在30 nm的纤维。使用维持中期离子条件的不同程序获得的部分变性染色体的TEM图像显示,染色体中的大量染色质组织良好,形成了多层板状结构。这些板的结构和力学性能使用冷冻-EM,电子断层扫描,在水性介质中的AFM成像以及基于AFM的纳米摩擦学和力谱学进行了研究。获得的结果表明,染色质丝形成了一个灵活的二维网络,其中DNA是负责摩擦力测量中观察到的机械强度的主要成分。基于平面几何的这种意外结构的发现为理解中期染色体中的染色质折叠开辟了全新的可能性。提出染色质是由许多垂直于染色质轴定向的堆叠的薄染色质板形成的。不同的实验证据表明,平板中的核小体是不规则取向的,并且连续的层相互交叉(表观层厚度为5-6 nm),从而允许相邻层的核小体之间面对面的相互作用。这种结构的高密度与在不同物种的中期染色体中观察到的DNA的高浓度相符,并且板中核小体的不规则取向使这些结果与通过有丝分裂细胞冰冻切片获得的结果兼容。建议用于染色体的多层染色质结构可以轻松解释染色体条带和在拉伸染色体中观察到的条带分裂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号