首页> 外文期刊>Meteorology and Atmospheric Physics >Explaining discrepancies in passive microwave cloud-radiation databases in microphysical context from two different cloud-resolving models.
【24h】

Explaining discrepancies in passive microwave cloud-radiation databases in microphysical context from two different cloud-resolving models.

机译:从两个不同的云解析模型解释微物理环境下的被动微波云辐射数据库中的差异。

获取原文
获取原文并翻译 | 示例
       

摘要

Mesoscale Cloud Resolving Models (CRMs) are often used to generate descriptions of the microphysical properties of precipitating clouds for the purpose of guiding precipitation retrieval algorithms designed for satellite-borne passive microwave radiometers. However, CRMs were not originally designed for that purpose. Notably, individual CRMs have adopted different bulk microphysical schemes to optimize the dynamical evolution of storms and accumulated rainfall, rather than optimizing for simulations of radiative properties - which are greatly affected by the microphysical details and vertical distributions of liquid and frozen hydrometeors. Thus, in principle, the simulated upwelling passive microwave (PMW) brightness temperatures (TBs) and associated precipitation retrievals generated by means of different CRMs with different microphysical parameterizations may be significantly different - even when the different CRMs prognostically adhere to the main dynamical and precipitation characteristics of a given storm. We investigate this issue for two different mesoscale models run at CRM scales, each using different parameterizations for the ongoing microphysics. These are the University of Wisconsin Nonhydrostatic Modeling System (NMS) and the 5th generation version of the Pennsylvania State University/National Center for Atmospheric Research Mesoscale Model (MM5). These two models are used to simulate the same flood-producing storm that occurred over northern Italy during 24-26 November 2002. Model outputs that best reproduce the structure of the storm, as observed by the Advanced Microwave Scanning Radiometer (AMSR-E) onboard the NASA AQUA satellite, are used to calculate upwelling PMW TBs. The simulated TBs are then used for retrieving the precipitation fields in conjunction with the AMSR-E observations. Finally, the two sets of results are intercompared in order to provide an indication of the expected uncertainties in CRM-based precipitation retrievals due to differing microphysical parameterizations. Results show that the two models are in close agreement insofar as simulating the organizational characteristics of the storm, and that the bulk statistical properties of the two sets of retrieved precipitation rates are in close correspondence. By the same token, although the overall conditional bias is only 0.09, close examination of the two sets of retrievals indicates that rain rates begin to show their most significant differences above ~4.5 mm h-1, with differences larger than 10 mm h-1 occurring just under 2% of the time.
机译:中尺度云解析模型(CRM)通常用于生成降水云的微物理特性的描述,目的是指导为人造卫星无源微波辐射计设计的降水获取算法。但是,CRM并不是最初为该目的而设计的。值得注意的是,各个CRM都采用了不同的整体微物理方案来优化风暴和累积降雨的动态演变,而不是优化辐射特性的模拟-辐射特性受液体和冷冻水凝物的微观细节以及垂直分布的影响很大。因此,原则上,通过具有不同微物理参数设置的不同CRM生成的模拟上升流被动微波(PMW)亮度温度(T B s)和相关的降水量恢复可能会显着不同-即使不同CRM在预测上遵守给定风暴的主要动力和降水特征。我们针对在CRM规模下运行的两个不同的中尺度模型调查了此问题,每种模型对正在进行的微物理学使用不同的参数化。它们是威斯康星大学的非静力学建模系统(NMS)和宾夕法尼亚州立大学/国家大气研究中尺度模型(MM5)的第五代版本。这两个模型用于模拟2002年11月24日至26日在意大利北部上空发生的同一场洪水。通过机载高级微波扫描辐射计(AMSR-E)观察,该模型的输出能够最好地再现风暴的结构。 NASA AQUA卫星用于计算上行PMW T B s。然后将模拟的T B 与AMSR-E观测结果一起用于反演降水场。最后,将两组结果进行比较,以表明由于不同的微物理参数设置而导致基于CRM的降水获取中预期的不确定性。结果表明,在模拟风暴的组织特征方面,这两个模型非常吻合,而且两组反演降水率的总体统计特性也非常接近。出于同样的原因,尽管总体条件偏差仅为0.09,但仔细检查两组反演结果表明,降雨率开始显示出它们在〜4.5 mm h -1 以上的最大差异,且存在差异大于10 mm h -1 的发生时间不到2%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号