首页> 外文期刊>Meteoritics & planetary science >Differentiation and evolution of the IVA meteorite parent body: Clues from pyroxene geochemistry in the Steinbach stony-iron meteorite
【24h】

Differentiation and evolution of the IVA meteorite parent body: Clues from pyroxene geochemistry in the Steinbach stony-iron meteorite

机译:IVA陨石母体的分化和演化:Steinbach石铁陨石中辉石地球化学的线索

获取原文
获取原文并翻译 | 示例
           

摘要

We analyzed the Steinbach IVA stony-iron meteorite using scanning electron microscopy (SEM), electron microprobe analysis (EMPA), laser ablation inductively-coupled-plasma mass spectroscopy (LA-ICP-MS), and modeling techniques. Different and sometimes adjacent low-Ca pyroxene grains have distinct compositions and evidently crystallized at different stages in a chemically evolving system prior to the solidification of metal and troilite. Early crystallizing pyroxene shows evidence for disequilibrium and formation under conditions of rapid cooling, producing clinobronzite and type 1 pyroxene rich in troilite and other inclusions. Subsequently, type 2 pyroxene crystallized over an extensive fractionation interval. Steinbach probably formed as a cumulate produced by extensive crystal fractionation (similar to 60-70% fractional crystallization) from a high-temperature (1450-1490 C) silicate-metallic magma. The inferred composition of the precursor magma is best modeled as having formed by >= 30-50% silicate partial melting of a chondritic protolith. If this protolith was similar to an LL chondrite (as implied by O-isotopic data), then olivine must have separated from the partial melt, and a substantial amount (similar to 53-56%) of FeO must have been reduced in the silicate magma. A model of simultaneous endogenic heating and collisional disruption appears best able to explain the data for Steinbach and other IVA meteorites. Impact disruption occurred while the parent body was substantially molten, causing liquids to separate from solids and oxygen-bearing gas to vent to space, leading to a molten metal-rich body that was smaller than the original parent body and that solidified from the outside in. This model can simultaneously explain the characteristics of both stony-iron and iron IVA meteorites, including the apparent correlation between metal composition and metallographic cooling rate observed for metal.
机译:我们使用扫描电子显微镜(SEM),电子微探针分析(EMPA),激光烧蚀电感耦合等离子体质谱(LA-ICP-MS)和建模技术分析了Steinbach IVA石铁陨石。不同的,有时是相邻的低钙辉石晶粒具有不同的组成,并且在金属和三叶草凝固之前,在化学演化体系中的不同阶段明显结晶。早期结晶的辉石显示出在快速冷却的条件下不平衡和形成的证据,产生了富钛沸石和其他包裹体的斜铁青铜矿和1型辉石。随后,2型辉石在较大的分馏间隔内结晶。 Steinbach可能是从高温(1450-1490 C)硅酸盐-金属岩浆进行广泛的晶体分级分离(类似于60-70%的分级结晶)而形成的堆积物。最好将前体岩浆的推断成分模拟为由≥30-50%的硅酸盐原生石的硅酸盐部分熔融而形成。如果该原石类似于LL球粒陨石(O同位素数据暗示),则橄榄石必须已与部分熔体分离,并且硅酸盐中必须还原了大量(约53-56%)的FeO。岩浆。内源性加热和碰撞破坏同时发生的模型似乎最能解释Steinbach和其他IVA陨石的数据。冲击破坏发生在母体基本熔融时,导致液体从固体中分离出来,并且载氧气体排入太空,从而导致熔融金属富集体小于原始母体,并从外部凝固。该模型可以同时解释石铁和IVA铁陨石的特征,包括金属成分与金属的金相冷却速率之间的表观相关性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号