首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >Effect of parent body evolution on equilibrium and kinetic isotope fractionation: a combined Ni and Fe isotope study of iron and stony-iron meteorites
【24h】

Effect of parent body evolution on equilibrium and kinetic isotope fractionation: a combined Ni and Fe isotope study of iron and stony-iron meteorites

机译:母体演化对平衡和动力学同位素分馏的影响:铁和石铁陨石的镍和铁同位素联合研究

获取原文
获取原文并翻译 | 示例
           

摘要

Various iron and stony-iron meteorites have been characterized for their Ni and Fe isotopic compositions using multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS) after sample digestion and chromatographic separation of the target elements in an attempt to further constrain the planetary differentiation processes that shifted these isotope ratios and to shed light on the formational history and evolution of selected achondrite parent body asteroids. Emphasis was placed on spatially resolved isotopic analysis of iron meteorites, known to be inhomogeneous at the mu m to mm scale, and on the isotopic characterization of adjacent metal and silicate phases in main group pallasites (PMG), mesosiderites, and the IIE and IAB complex silicate-bearing iron meteorites. In a 3-isotope plot of Ni-60/58 versus Ni-62/58, the slope of the best-fitting straight line through the laterally resolved Ni isotope ratio data for iron meteorites reveals kinetically controlled isotope fractionation (beta(exper) = 1.981 +/- 0.039, 1 SD), predominantly resulting from sub-solidus diffusion (with the fractionation exponent beta connecting the isotope fractionation factors, as alpha(62/58) = alpha(beta)(60/58)). The observed relation between delta Fe-56/54 and Ir concentration in the metal fractions of PMGs and in IIIAB iron meteorites indicates a dependence of the bulk Fe isotopic composition on the fractional crystallization of an asteroidal metal core. No such fractional crystallization trends were found for the corresponding Ni isotope ratios or for other iron meteorite groups, such as the IIABs. In the case of the IIE and IAB silicate-bearing iron meteorites, the Fe and Ni isotopic signatures potentially reflect the influence of impact processes, as the degree of diffusion-controlled Ni isotope fractionation is closer to that of Fe compared to what is observed for magmatic iron meteorite types. Between the metal and olivine counterparts of pallasites, the Fe and Ni isotopic compositions show clearly resolvable differences, similar in magnitude but opposite in sign (Delta Fe-56/54(met-oliv) of +0.178 +/- 0.092% and Delta Ni-60/58(met-oliv) of -0.212 +/- 0.082%, 2SD). As such, the heavier Fe isotope ratios for the metal (delta Fe-56/54 = +0.023% to +0.247%) and lighter values for the corresponding olivines (delta Fe-56/54 = -0.155% to -0.075%) are interpreted to reflect later-stage Fe isotopic re-equilibration between these phases, rather than a pristine record of mantle-core differentiation. In the case of mesosiderites, the similarly lighter Ni and Fe isotopic signatures found for the silicate phase (-0.149% to + 0.023% for delta Ni-60/58, -0.214% to -0.149% for delta Fe-56/54) compared to the metal phase (+0.168% to +0.191% for delta Ni-60/58, +0.018% to +0.120% for delta Fe-56/54) likely result from Fe and Ni diffusion. Overall, the Fe and Ni isotopic compositions of iron-rich meteorites reflect multiple, often super-imposed, processes of equilibrium or kinetic nature, illustrating convoluted parent body histories and late-stage interaction between early-formed planetesimal reservoirs. (C) 2016 Elsevier Ltd. All rights reserved.
机译:样品消解并色谱分离目标元素后,使用多收集器电感耦合等离子体质谱法(MC-ICP-MS)对各种铁和石铁陨石的Ni和Fe同位素组成进行了表征,以尝试进一步限制改变这些同位素比率的行星分化过程,并揭示了选定的斜长石母体小行星的形成历史和演化。重点放在了空间分辨的铁陨石的同位素分析上,该陨石在微米到毫米的尺度上是不均匀的,并且主要表征了方铁矿(PMG),中观菱铁矿,以及IIE和IAB中相邻金属和硅酸盐相的同位素特征复杂的含硅酸盐铁陨石。在Ni-60 / 58对Ni-62 / 58的3个同位素图中,铁陨石的横向拟合Ni同位素比数据的最佳拟合直线的斜率显示了动力学控制的同位素分馏(beta(exper)= 1.981 +/- 0.039,1 SD),主要是由亚固相线扩散引起的(分级指数β连接同位素分级因子,如alpha(62/58)=alphaβ(60/58))。观察到的PMG和IIIAB铁陨石中的Fe-56 / 54与Ir浓度之间的关系表明,铁同位素组成对小行星金属核的分步结晶有依赖性。对于相应的Ni同位素比率或其他陨铁基团(如IIAB),没有发现这种分级结晶趋势。对于含IIE和IAB含硅酸盐的铁陨石,Fe和Ni同位素特征可能反映了撞击过程的影响,因为扩散控制的Ni同位素分馏程度与Fe相比更接近于Fe。岩浆铁陨石类型。在辉石的金属和橄榄石对应物之间,铁和镍的同位素组成显示出明显可分辨的差异,大小相似但符号相反(ΔFe-56/ 54(met-oliv)为+0.178 +/- 0.092%,ΔNi -60/58(met-oliv)为-0.212 +/- 0.082%,2SD)。因此,金属的铁同位素比重(δFe-56 / 54 = + 0.023%至+ 0.247%)和较轻的相应橄榄石值(δFe-56 / 54 = -0.155%至-0.075%)认为这反映了这些阶段之间后期的铁同位素重新平衡,而不是原始的地幔核分化记录。在中铁菱铁矿的情况下,硅酸盐相的Ni和Fe同位素特征也较轻(δNi-60 / 58为-0.149%至+ 0.023%,δFe-56/ 54为-0.214%至-0.149%)与金属相相比(δNi-60 / 58的+ 0.168%至+ 0.191%,δ-Fe-56/ 54的+ 0.018%至+ 0.120%)可能是由于Fe和Ni扩散所致。总的来说,富铁陨石的铁和镍同位素组成反映了多个(通常是叠加的)平衡或动力学性质的过程,说明了复杂的母体历史和早期形成的小行星储层之间的后期相互作用。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号