...
首页> 外文期刊>Metabolic engineering >Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae
【24h】

Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae

机译:使用CRISPR / Cas9在酿酒酵母中进行多重代谢途径工程

获取原文
获取原文并翻译 | 示例
           

摘要

CRISPR/Cas9 is a simple and efficient tool for targeted and marker-free genome engineering. Here, we report the development and successful application of a multiplex CRISPR/Cas9 system for genome engineering of up to 5 different genomic loci in one transformation step in baker's yeast Saccharomyces cerevisiae. To assess the specificity of the tool we employed genome re-sequencing to screen for off-target sites in all single knock-out strains targeted by different gRNAs. This extensive analysis identified no more genome variants in CRISPR/Cas9 engineered strains compared to wild-type reference strains. We applied our genome engineering tool for an exploratory analysis of all possible single, double, triple, quadruple and quintuple gene disruption combinations to search for strains with high mevalonate production, a key intermediate for the industrially important isoprenoicl biosynthesis pathway. Even though we did not overexpress any genes in the mevalonate pathway, this analysis identified strains with mevalonate titers greater than 41-fold compared to the wild-type strain. Our findings illustrate the applicability of this highly specific and efficient multiplex genome engineering approach to accelerate functional genomics and metabolic engineering efforts. (C) 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
机译:CRISPR / Cas9是用于靶向和无标记基因组工程的简单有效的工具。在这里,我们报道了在面包酵母酵母中的一个转化步骤中,用于多达5个不同基因组基因座的基因组工程的多重CRISPR / Cas9系统的开发和成功应用。为了评估该工具的特异性,我们采用了基因组重测序技术来筛选不同gRNA靶向的所有单基因敲除菌株中的脱靶位点。这项广泛的分析发现,与野生型参考菌株相比,CRISPR / Cas9工程菌株中没有更多的基因组变异。我们应用基因组工程工具对所有可能的单,双,三,四和五重基因破坏组合进行了探索性分析,以寻找具有高甲羟戊酸产量的菌株,甲羟戊酸产量是工业上重要的异戊二烯生物合成途径的关键中间体。即使我们没有在甲羟戊酸途径中过表达任何基因,但该分析仍鉴定出甲羟戊酸效价比野生型菌株高41倍的菌株。我们的发现表明,这种高度特异性和高效的多重基因组工程方法可加快功能基因组学和代谢工程的工作。 (C)2015年国际代谢工程学会。由Elsevier Inc.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号