...
首页> 外文期刊>Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science >Effect of Microstructure on Creep Crack Growth Behavior of a Near-alpha Titanium Alloy IMI-834
【24h】

Effect of Microstructure on Creep Crack Growth Behavior of a Near-alpha Titanium Alloy IMI-834

机译:显微组织对近α钛合金IMI-834的蠕变裂纹扩展行为的影响

获取原文
获取原文并翻译 | 示例
           

摘要

In the present study, the effect of microstructure (i.e., alpha + beta and transformed beta) on creep crack growth (CCG) behavior of a near-alpha (IMI 834) titanium alloy has been explored at temperatures 550 deg C and 600 deg C. For characterizing the CCG behavior of the alloy, both stress intensity factor (K) and energy integral parameter (C_t) were used in the present investigation. The use of stress intensity factor (K) as crack-tip parameter is not appropriate in the present study as no unique correlation between crack growth rate and K could be obtained from the observed trend due to transients in the creep crack rate data. On the other hand, C_t parameter for both microstructural conditions consolidates CCG data into a single trend. The alloy with fully transformed beta microstructure exhibits better CCG resistance as compared to bimodal (alpha + beta) microstructure. This is consistent with the fact that the transformed beta structure offers superior creep resistance as compared to alpha + beta microstructure. Microstructural examination has revealed that CCG for both microstructural conditions is accompanied by formation of damage zone in the form of numerous environmental-assisted secondary surface cracks (perpendicular to the stress axis) ahead of the main crack tip. For alpha + beta microstructure of the alloy, the surface creep cracks were formed by growth and coalescence of microcracks nucleated by fracture of primary alpha particles. While in the interior of the specimens, CCG occurred by growth and coalescence of microvoids nucleated at primary alpha/transformed beta (matrix) interfaces. For beta microstructure of the alloy, while the surface creep cracks formed by growth and coalescence of microvoids nucleated at titanium enriched surface oxide particles, in the interior CCG occurred by nucleation of intergranular cavities.
机译:在本研究中,已经在550摄氏度和600摄氏度的温度下探索了微结构(即,α+β和转化的β)对近α(IMI 834)钛合金的蠕变裂纹生长(CCG)行为的影响。为了表征合金的CCG行为,本研究中同时使用了应力强度因子(K)和能量积分参数(C_t)。在本研究中,不宜使用应力强度因子(K)作为裂纹尖端参数,因为由于蠕变裂纹速率数据中的瞬变,无法从观察到的趋势中获得裂纹扩展速率和K之间的唯一相关性。另一方面,两个微观结构条件的C_t参数将CCG数据合并为一个趋势。与双峰(α+β)微观结构相比,具有完全转变的β微观结构的合金表现出更好的CCG抗性。这与以下事实相吻合:与α+β微观结构相比,转变后的β结构提供了卓越的抗蠕变性。显微组织检查表明,在两种显微组织条件下,CCG都在主裂纹尖端之前以许多环境辅助的次生表面裂纹(垂直于应力轴)的形式形成损伤区。对于合金的α+β微观结构,表面蠕变裂纹是由微裂纹的生长和聚结形成的,微裂纹的生长和聚结是由初级α粒子的破裂形核的。在标本内部时,CCG发生在主要α/转化的β(矩阵)界面上的有核微孔的生长和聚结。对于合金的β微结构,尽管由富钛的表面氧化物颗粒上成核的微孔的生长和聚结形成的表面蠕变裂纹,但内部CCG中却发生了晶间空洞的成核。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号