...
首页> 外文期刊>Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science >Quantifying Thermomechanical Fatigue of Light-Metal-Matrix Composites by Mechanical Spectroscopy
【24h】

Quantifying Thermomechanical Fatigue of Light-Metal-Matrix Composites by Mechanical Spectroscopy

机译:机械光谱法定量分析轻金属基复合材料的热机械疲劳

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

This article reviews recent progress in understanding the stress-relaxation mechanisms in metal-matrix composites (MMCs) subjected to thermomechanical fatigue. Mechanical loss, dynamic shear modulus, and permanent torsional-strain measurements have been performed with forced oscillations during thermal cycling. A transient mechanical-loss maximum, which is absent in the monolithic material, appears during cooling. It has been attributed to the development of plastic zones around the reinforcements by dislocation generation and motion, which result from the differential thermal contraction of the matrix and reinforcement. This damping maximum is strongly dependent on both measurement and material parameters. The reversible shear-modulus evolution during thermal cycling suggests that no interfacial debonding occurs. In unalloyed matrices, extended thermal-stress-induced plasticity occurs, leading to a plateau in the shear modulus, which is recovered at low temperatures by plastic-zone overlapping and matrix strain hardening. Simultaneously measured strain-temperature loops exhibit both reversible and permanent plasticity during thermal cycling (strain ratcheting).
机译:本文回顾了在了解遭受热机械疲劳的金属基复合材料(MMC)中的应力松弛机制方面的最新进展。在热循环过程中,在强制振荡的情况下进行了机械损耗,动态剪切模量和永久扭转应变测量。在冷却过程中出现了整体材料中不存在的瞬时机械损耗最大值。这归因于位错产生和运动引起的增强物周围塑性区的发展,这是由于基体和增强物的热收缩差异引起的。最大阻尼在很大程度上取决于测量和材料参数。热循环过程中可逆的剪切模量演变表明没有发生界面剥离。在非合金基体中,会发生由热应力引起的扩展塑性,从而导致剪切模量达到平稳状态,并在低温下通过塑性区重叠和基体应变硬化而恢复。同时测量的应变温度环路在热循环(应变棘轮)过程中表现出可逆和永久可塑性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号