首页> 外文期刊>Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science >A Mechanistic Study of Nanoscale Structure Development, Phase Transition, Morphology Evolution, and Growth of Ultrathin Barium Titanate Nanostructured Films
【24h】

A Mechanistic Study of Nanoscale Structure Development, Phase Transition, Morphology Evolution, and Growth of Ultrathin Barium Titanate Nanostructured Films

机译:超薄钛酸钡纳米结构薄膜的纳米尺度结构发展,相变,形貌演化和生长的机理研究

获取原文
获取原文并翻译 | 示例
           

摘要

In the present work, an improved method is developed for preparing highly pure ultrathin barium titanate nanostructured films with desired structural and morphological characteristics. In contrast to other approaches, our method can be carried out at a relatively lower temperature to obtain barium titanate ultrathin films free from secondary phases, impurities, and cracks. To reach an in-depth understanding of scientific basis of the proposed process, and in order to disclose the mechanism of formation and growth of barium titanate ultrathin film, in-detail analysis is carried out using XRD, SEM, FE-SEM, and AFM techniques aided by theoretical calculations. The effects of calcining temperature on the nanoscale structure development, phase transition, morphology evolution, and growth mechanism of the ultrathin barium titanate nanostructured films are studied. XRD results indicate that the reaction leading to the formation of the barium titanate initiates at about 873 K (600 °C) and completes at about 1073 K (800 °C). Moreover, secondary phases are not detected in the XRD patterns of the ultrathin films which this observation ensures the phase purity of the ultrathin films. The results show that the ultrathin films are nanothickness and nanostructured leading to the enhancement of rate of diffusion by activating short-circuit diffusion mechanisms. The high rate of the diffusion enhances the rate of the formation of barium titanate and also prevents from the formation of the secondary phases in the final products. SEM and AFM results indicate that the deposited ultrathin films are crack-free exhibiting a dense nanogranular structure. The results indicate that the root-mean square (RMS) roughness of the ultrathin films is in the range of 1.66 to 6.71 run indicating the surface of the ultrathin films is smooth. RMS roughness also increases with an increase in the calcining temperature which this observation seems to be related to the grain growth process. Finally, based on the observed results, the mechanism of the formation and growth of the ultrathin barium titanate nanostructured films is deeply disclosed.
机译:在本工作中,开发了一种改进的方法来制备具有所需结构和形态特征的高纯度超薄钛酸钡纳米结构膜。与其他方法相反,我们的方法可以在相对较低的温度下进行,以获得不含次级相,杂质和裂缝的钛酸钡超薄膜。为了深入了解所提出方法的科学基础,并揭示钛酸钡超薄膜的形成和生长机理,使用XRD,SEM,FE-SEM和AFM进行了详细分析理论计算辅助的技术。研究了煅烧温度对超薄钛酸钡纳米结构薄膜的纳米尺度结构发展,相变,形貌演化以及生长机理的影响。 XRD结果表明,导致钛酸钡形成的反应在约873K(600℃)下开始,并在约1073K(800℃)下完成。而且,在超薄膜的XRD图案中未检测到次级相,该观察确保了超薄膜的相纯度。结果表明,超薄膜具有纳米厚度和纳米结构,可通过激活短路扩散机制来提高扩散速率。较高的扩散速率提高了钛酸钡的形成速率,并且还防止了最终产物中第二相的形成。 SEM和AFM结果表明,沉积的超薄膜无裂纹,表现出致密的纳米颗粒结构。结果表明,超薄膜的均方根(RMS)粗糙度在1.66至6.71nm的范围内,表明超薄膜的表面是光滑的。 RMS粗糙度也随着煅烧温度的升高而增加,该观察结果似乎与晶粒生长过程有关。最后,基于观察到的结果,深入揭示了超薄钛酸钡纳米结构薄膜的形成和生长机理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号