...
首页> 外文期刊>Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science >Hierarchical Silica Nanostructures Inspired by Diatom Algae Yield Superior Deformability, Toughness, and Strength
【24h】

Hierarchical Silica Nanostructures Inspired by Diatom Algae Yield Superior Deformability, Toughness, and Strength

机译:受硅藻藻类启发的分层二氧化硅纳米结构可产生出色的变形性,韧性和强度

获取原文
获取原文并翻译 | 示例

摘要

A universal design paradigm in biology is the use of hierarchies, which is evident in the structure of proteins, cells, tissues, and organisms, as well as outside the material realm in the design of signaling networks in complex organs such as the brain. A fascinating example of a biological structure is that of diatoms, a microscopic mineralized algae that is mainly composed of amorphous silica, which features a hierarchical structure that ranges from the nano- to the macroscale. Here, we use the porous structure found at submicron length scales in diatom algae as a basis to study a bioinspired nanoporous material implemented in crystalline silica. We consider the mechanical performance of two nanoscale levels of hierarchy, studying an array of thin-walled foil silica structures and a hierarchical arrangement of foil elements into a porous silica mesh structure. By comparing their elastic, plastic, and failure mechanisms under tensile deformation, we elucidate the impact of hierarchies and the wall width of constituting silica foils on the mechanical properties, by carrying out a series of large-scale molecular dynamics (MD) simulations with the first principles based reactive force field ReaxFF. We find that by controlling the wall width and by increasing the level of hierarchy of the nanostructure from a foil to a mesh, it is possible to significantly enhance the mechanical response of the material, creating a highly deformable, strong, and extremely tough material that can be stretched in excess of 100 pct strain, in stark contrast to the characteristic brittle performance of bulk silica. We find that concurrent mechanisms of shearing and crack arrest lead to an enhanced toughness and are enabled through the hierarchical assembly of foil elements into a mesh structure, which could not be achieved in foil structures alone. Our results demonstrate that including higher levels of hierarchy are beneficial in improving the mechanical properties and deformability of intrinsically brittle materials. The findings reported here provide insight into general material design approaches that may enable us to transform a brittle material such as silicon or silica into a ductile, yet strong and tough material, solely through alterations of its structural arrangement at the nanoscale.
机译:生物学中的通用设计范式是层次结构的使用,这种层次结构在蛋白质,细胞,组织和生物的结构中以及在复杂器官(例如大脑)的信号网络设计中的物质领域之外都很明显。生物学结构的一个引人入胜的例子是硅藻,一种主要由无定形二氧化硅组成的微观矿化藻类,具有从纳米级到宏观级的分层结构。在这里,我们使用硅藻藻类中亚微米长度尺度上发现的多孔结构作为基础,研究在结晶二氧化硅中实现的生物启发性纳米多孔材料。我们考虑了两个纳米级层次结构的机械性能,研究了薄壁箔二氧化硅结构的阵列以及箔元素到多孔二氧化硅网状结构中的层次排列。通过比较它们在拉伸变形下的弹性,塑性和破坏机理,我们通过进行一系列的大规模分子动力学(MD)模拟,阐明了层级结构和构成二氧化硅箔的壁宽对机械性能的影响。基于第一原理的反作用力场ReaxFF。我们发现,通过控制壁宽并增加从箔片到网片的纳米结构的层次级别,可以显着增强材料的机械响应,从而创建高度可变形,坚固且极其坚韧的材料,从而可以拉伸超过100 pct应变,这与块状二氧化硅的特性脆性形成鲜明对比。我们发现,剪切和裂纹阻止的并发机制导致了增强的韧性,并且可以通过将箔元件分层组装到网状结构中来实现,这是单独在箔结构中无法实现的。我们的结果表明,包括更高级别的层次结构有助于改善固有脆性材料的机械性能和可变形性。此处报道的发现提供了对一般材料设计方法的见解,这些方法可能使我们仅通过改变纳米级的结构安排就可以将诸如硅或二氧化硅之类的脆性材料转变为可延展而又坚韧的材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号