首页> 外文期刊>Methods in Ecology and Evolution >Nonparametric upscaling of stochastic simulation models using transition matrices
【24h】

Nonparametric upscaling of stochastic simulation models using transition matrices

机译:使用过渡矩阵的随机模拟模型的非参数放大

获取原文
获取原文并翻译 | 示例
           

摘要

The problem of scaling up from tractable, small-scale observations and experiments to prediction of large-scale patterns is at the core of ecological theory and application, and one of the central problems in ecology. We present and test a general nonparametric framework to upscale spatially explicit and stochastic simulation models. The idea is to design a state space, defined by the important state variables of the small-scale model, and to divide it into a finite number of discrete states. Transition probabilities are then tallied by monitoring extensive simulation runs of the small-scale model, covering the entire range of initial conditions, states and external drivers that may occur for the desired application. We exemplify our approach by upscaling an individual-based model that simulates the spatiotemporal dynamics of Festuca pallescens steppes under sheep grazing in Western Patagonia, Argentina, with a spatial resolution of 03mx03m and a 015-ha extent. The upscaled model simulates a 2500-ha paddock with 015-ha resolution and is enriched with additional rules that describe heterogeneity in the local stocking rate at the paddock scale. We obtained 24 transition matrices that governed the upscaled model for different combinations of stocking rates and annual precipitation. The upscaled model produced excellent predictions for the long-term dynamics, but as expected, it did not fully capture the interannual dynamics of the original model. Rules for heterogeneity in the local stocking rate allowed for emergence of realistic vegetation patterns as commonly observed for water points in arid rangelands. Our general nonparametric upscaling approach can be applied to a wide range of stochastic simulation models in which the dynamics can be approximated by a set of states, transitions and external drivers. Because estimation of the transition probabilities can be done parallel, our approach can be applied to a wide range of models of intermediate complexity. Our approach closes a gap in our ability to scale up from small scales, where the biological knowledge is available, to larger scales that are relevant for management.
机译:从易处理的小规模观测和试验扩展到大尺度模式预测的问题是生态学理论和应用的核心,也是生态学的核心问题之一。我们提出并测试了通用的非参数框架,以提升空间显式和随机模拟模型的性能。这个想法是设计一个由小规模模型的重要状态变量定义的状态空间,并将其划分为有限数量的离散状态。然后,通过监视小规模模型的广泛模拟运行来计算转换概率,其中涵盖了可能针对所需应用程序发生的初始条件,状态和外部驱动程序的整个范围。我们通过放大基于个人的模型来举例说明我们的方法,该模型模拟阿根廷西部巴塔哥尼亚放牧绵羊的羊茅(Festuca pallescens)草原的时空动态,空间分辨率为03mx03m,范围为015公顷。升级后的模型以015公顷的分辨率模拟了2500公顷的围场,并增加了描述围场规模局部放养率异质性的其他规则。我们获得了24个过渡矩阵,用于控制放牧率和年降水量的不同组合的放大模型。升级后的模型为长期动力学提供了出色的预测,但正如预期的那样,它并未完全捕捉原始模型的年际动力学。当地放养率异质性的规则允许出现现实的植被格局,这在干旱牧场的水位上通常会观察到。我们一般的非参数放大方法可以应用于各种随机仿真模型,其中可以通过一组状态,转换和外部驱动器来近似动态。因为转换概率的估计可以并行完成,所以我们的方法可以应用于各种中等复杂度的模型。我们的方法弥合了我们从小规模扩展到现有管理规模的能力方面的差距,小范围内可获得生物学知识,而大范围则可进行管理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号