首页> 外文学位 >Upscaling ab-initio chemistry models to non-equilibrium flow simulations.
【24h】

Upscaling ab-initio chemistry models to non-equilibrium flow simulations.

机译:从头计算化学模型升级为非平衡流模拟。

获取原文
获取原文并翻译 | 示例

摘要

Thermo-chemical nonequilibrium is generated by hypersonic vehicles, high-speed combustion, detonations, and other devices that rapidly heat the gas, as in shock waves, and convect it before a new equilibrium state is reached. Nonequilibrium affects reaction rates, heat transfer, aero-loads, flame stability and other critical engineering processes. Due to the difficult of measuring high enthalpy nonequilibrium processes, modern reaction and internal energy exchange models are phenomenological. They are able to reproduce available equilibrium data but they are inaccurate under nonequilibrium conditions. The work in this thesis replaces the phenomenological models by upscaling ab-initio calculations. There are two main challenges in linking ab-initio calculations to full flowfield simulations. First, the needed ab-initio surfaces for many collision partners are not available. Second, the produced state-to-state cross section datasets are too large to be efficiently implemented in engineering simulations. These challenges are addressed by building engineering-accuracy potentials and proposing new efficient reaction and energy exchange models, based on maximum entropy considerations. The new models reduce both the number of required quasi-classical calculations and the collision parameter databases. Although the work in this thesis focuses on O2+O interactions because of prevalence of oxygen in flight, all developed models may be applied to other diatom-atom interactions and can be extended to other diatom-diatom combinations.
机译:热化学非平衡是由超音速飞行器,高速燃烧,爆炸和其他设备产生的,这些设备会像冲击波那样迅速加热气体,并在达到新的平衡状态之前将其对流。非平衡会影响反应速率,热传递,空气负荷,火焰稳定性和其他关键工程过程。由于难以测量高焓非平衡过程,因此现代反应和内部能量交换模型是现象​​学的。它们能够重现可用的平衡数据,但在非平衡条件下是不准确的。本文的工作是通过增加从头计算来代替现象学模型。将ab-initio计算与整个流场仿真相链接时,存在两个主要挑战。首先,许多碰撞伙伴所需的从头开始表面不可用。其次,所生成的状态间横截面数据集太大,无法在工程仿真中有效地实现。通过建立工程精度潜力并基于最大熵考虑,提出新的有效反应和能量交换模型来应对这些挑战。新模型减少了所需的准经典计算和碰撞参数数据库的数量。尽管由于飞行中氧气的流行,本文的工作重点是O2 + O相互作用,但是所有开发的模型都可以应用于其他硅藻-原子相互作用,并且可以扩展到其他硅藻-硅藻组合。

著录项

  • 作者

    Kulakhmetov, Marat F.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Aerospace engineering.;Physical chemistry.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 207 p.
  • 总页数 207
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号