首页> 外文期刊>Mathematical Biosciences: An International Journal >Stochastic differential equations as a tool to regularize the parameter estimation problem for continuous time dynamical systems given discrete time measurements
【24h】

Stochastic differential equations as a tool to regularize the parameter estimation problem for continuous time dynamical systems given discrete time measurements

机译:随机微分方程作为在离散时间测量下对连续时间动力系统参数估计问题进行正则化的工具

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper we consider the problem of estimating parameters in ordinary differential equations given discrete time experimental data. The impact of going from an ordinary to a stochastic differential equation setting is investigated as a tool to overcome the problem of local minima in the objective function. Using two different models, it is demonstrated that by allowing noise in the underlying model itself, the objective functions to be minimized in the parameter estimation procedures are regularized in the sense that the number of local minima is reduced and better convergence is achieved. The advantage of using stochastic differential equations is that the actual states in the model are predicted from data and this will allow the prediction to stay close to data even when the parameters in the model is incorrect. The extended Kalman filter is used as a state estimator and sensitivity equations are provided to give an accurate calculation of the gradient of the objective function. The method is illustrated using in silico data from the FitzHugh–Nagumo model for excitable media and the Lotka–Volterra predator–prey system. The proposed method performs well on the models considered, and is able to regularize the objective function in both models. This leads to parameter estimation problems with fewer local minima which can be solved by efficient gradient-based methods.
机译:在本文中,我们考虑了给定离散时间实验数据的常微分方程中参数估计的问题。研究了从普通微分方程设置到随机微分方程设置的影响,以此作为克服目标函数中局部极小值的工具。通过使用两个不同的模型,证明了通过允许底层模型本身中的噪声,可以减少局部最小值的数量并实现更好的收敛,从而规范了要在参数估计过程中最小化的目标函数。使用随机微分方程的优势在于,可以从数据中预测模型中的实际状态,即使模型中的参数不正确,这也可以使预测保持接近数据。扩展的卡尔曼滤波器用作状态估计器,并提供灵敏度方程式,以精确计算目标函数的梯度。使用FitzHugh–Nagumo模型的计算机模拟数据对可激发介质和Lotka–Volterra捕食者–猎物系统进行了说明。所提出的方法在所考虑的模型上表现良好,并且能够规范两个模型中的目标函数。这导致具有较少局部最小值的参数估计问题,这可以通过有效的基于梯度的方法来解决。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号