...
首页> 外文期刊>Medical Physics >Comparison of measured and Monte Carlo calculated dose distributions from the NRC linac.
【24h】

Comparison of measured and Monte Carlo calculated dose distributions from the NRC linac.

机译:从NRC直线加速器测量的和蒙特卡洛计算的剂量分布的比较。

获取原文
获取原文并翻译 | 示例

摘要

We have benchmarked photon beam simulations with the EGS4 user code BEAM [Rogers et al., Med. Phys. 22, 503-524 (1995)] by comparing calculated and measured relative ionization distributions in water from the 10 and 20 MV photon beams of the NRC linac. Unlike previous calculations, the incident electron energy is known independently to 1%, the entire extra-focal radiation is simulated, and electron contamination is accounted for. The full Monte Carlo simulation of the linac includes the electron exit window, target, flattening filter, monitor chambers, collimators, as well as the PMMA walls of the water phantom. Dose distributions are calculated using a modified version of the EGS4 user code DOSXYZ which additionally allows scoring of average energy and energy fluence in the phantom. Dose is converted to ionization by accounting for the (L/rho)water(air) variation in the phantom, calculated in an identical geometry for the realistic beams using a new EGS4 user code, SPRXYZ. The variation of (L/rho)water(air) with depth is a 1.25% correction at 10 MV and a 2% correction at 20 MV. At both energies, the calculated and the measured values of ionization on the central axis in the buildup region agree within 1% of maximum ionization relative to the ionization at 10 cm depth. The agreement is well within statistics elsewhere. The electron contamination contributes 0.35(+/- 0.02) to 1.37(+/- 0.03)% of the maximum dose in the buildup region at 10 MV and 0.26(+/- 0.03) to 3.14(+/- 0.07)% of the maximum dose at 20 MV. The penumbrae at 3 depths in each beam (in g/cm2), 1.99 (dmax, 10 MV only), 3.29 (dmax, 20 MV only), 9.79 and 19.79, agree with ionization chamber measurements to better than 1 mm. Possible causes for the discrepancy between calculations and measurements are analyzed and discussed in detail.
机译:我们已经使用EGS4用户代码BEAM [Rogers et al。,Med。物理22,503-524(1995)],比较了NRC直线加速器的10和20 MV光子束在水中计算和测量的相对电离分布。与以前的计算不同,入射电子能量的独立已知为1%,模拟了整个焦点外辐射,并考虑了电子污染。直线加速器的完整蒙特卡洛模拟包括电子出射窗,靶材,展平滤波器,监控室,准直仪以及水模的PMMA壁。使用EGS4用户代码DOSXYZ的修改版本来计算剂量分布,该版本还允许对幻像中的平均能量和能量通量进行评分。通过考虑人体模型中的(L / r)水(空气)变化,可将剂量转换为电离,使用新的EGS4用户代码SPRXYZ以与实际光束相同的几何形状计算得出。 (L / rho)水(空气)随深度的变化在10 MV时校正为1.25%,在20 MV时校正为2%。在这两种能量下,相对于10 cm深度处的电离,在积聚区域中轴上的电离的计算值和测量值在最大电离的1%内。该协议完全在其他地方的统计数据之内。在10 MV时,电子污染占堆积区域最大剂量的0.35(+/- 0.02)至1.37(+/- 0.03)%,占电子发射的0.26(+/- 0.03)至3.14(+/- 0.07)%。 20 MV时的最大剂量。每个离子束中3个深度处的半影(单位为g / cm2),1.99(dmax,仅10 MV),3.29(dmax,仅20 MV),9.79和19.79,与电离室的测量结果一致,优于1 mm。分析和讨论了计算和度量之间差异的可能原因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号