首页> 外文期刊>Medical engineering & physics. >Establishment of an architecture-specific experimental validation approach for finite element modeling of bone by rapid prototyping and high resolution computed tomography.
【24h】

Establishment of an architecture-specific experimental validation approach for finite element modeling of bone by rapid prototyping and high resolution computed tomography.

机译:通过快速原型制作和高分辨率计算机断层扫描,建立用于骨骼的有限元建模的特定于体系结构的实验验证方法。

获取原文
获取原文并翻译 | 示例
           

摘要

A new experimental validation method for assessing the accuracy of large-scale finite element (FE) models of bone micro-structure at the apparent and tissue level was developed. Augmented scaled bone replicas were built using rapid prototype machines based on micro-computed tomography (micro-CT) data. The geometric accuracy of the model was evaluated by comparing experimental tests with the replicas to the FE solution based on the same micro-CT data. A new version of the large-scale FE solver was developed to incorporate orthotropic material properties, hence the experimentally determined properties of the rapid prototype material were input into the FE models. The modified FE solver predicted the experimental apparent level stiffness within less than 1%, and the difference between experimental strain gauge measurements and FE-calculated surface stresses was 7% and 49% on a flat and curved surface region, respectively. While absolute error estimates of surface stresses were limited due to strain gauge errors, the relatively larger difference on the curved surface is indicative of the limitations of a hexahedron FE model for representing such geometries. Although the validation approach is applied here for hexahedron based meshes, the method is flexible for varying bone architectures and will be important for validation of future large-scale FE modeling developments that utilize techniques such as mesh smoothing and tetrahedron elements.
机译:开发了一种新的实验验证方法,用于评估表观和组织水平的骨微观结构大规模有限元(FE)模型的准确性。使用基于微型计算机断层扫描(micro-CT)数据的快速原型机,建立了扩大比例​​的骨骼复制品。通过基于相同的微CT数据,通过将实验测试与复制品与FE解决方案进行比较,来评估模型的几何精度。开发了一种新版本的大型有限元求解器,以融合正交各向异性材料的特性,因此将快速原型材料的实验确定特性输入到有限元模型中。改进的有限元求解器预测的实验视在水平刚度在1%以内,并且在平坦和弯曲的表面区域,实验应变仪测量值与有限元计算的表面应力之间的差异分别为7%和49%。尽管表面应力的绝对误差估计由于应变仪误差而受到限制,但曲面上相对较大的差异表明用于表示此类几何形状的六面体有限元模型的局限性。尽管此处将验证方法应用于基于六面体的网格,但是该方法对于变化的骨骼结构是灵活的,对于验证利用网格平滑和四面体元素等技术的未来大规模有限元建模开发的验证将非常重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号