...
首页> 外文期刊>Medical Physics >On the scattering power of radiotherapy protons.
【24h】

On the scattering power of radiotherapy protons.

机译:放疗质子的散射能力。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

PURPOSE: First, to show that accurate formulas for scattering power T must take into account the competition between the Gaussian core and the single scattering tail of the angular distribution, which affects the rate of change in the Gaussian width and leads to the single scattering correction (SSC). Second, to show that the SSC requires that T(x) be nonlocal: Besides material properties and energy at the point of interest, it must depend in some fashion on how much multiple scattering has already taken place. Third, after reviewing five previous formulas (three local and two nonlocal), to derive an improved "differential Moliere" formula T(dM). Last, to investigate, by studying some practical cases, when an accurate formula for T is actually needed. METHODS: We first take the numerical derivative of the Moliere/Fano/Hanson (theta2) in order to find the true SSC. We simplify the formula for T(IC) (ICRU Report 35) for protons, introducing a new material dependent property, the "scattering length" X(s), analogous to radiation length X(0). We then use T(IC) as a basis for T(dM) by including a nonlocal correction factor fdM which, by virtue of the Overas approximation, parametrizes the single scattering correction. RESULTS: The improved scattering power is T(dM)[triple band]f(dM)(pv,p1v1) x (E(s)/pv)(2)1/X(s) where fdM 0.5244+0.1975 lg(1-(pv/p1v1)2)+0.2320 lg(pv)-0.0098 lg(pv)lg(1-(pv/p1v1)2), P1v1 (MeV) is the initial product of proton momentum and speed, pv is the same at the point of interest, and E(s) = 15.0 MeV. T(dM) is easily computed and generalizes readily to mixed slabs because fdM is not material dependent. CONCLUSIONS: Whether an accurate formula for T is required depends very much on the problem at hand. For beam spreading in water, five of the six formulas for T give almost identical results, suggesting that patient dose calculations are insensitive to T. That is not true, however, of beam spreading in Pb. At the opposite extreme, the projected rms beam width at the end of a Pb/Lexan/air stack, analogous to the upstream modulator in a passive beam spreading system, is sensitive to T. In this case a simple experiment would discriminate between all but two of the six formulas discussed. Scattering power applies as much to Monte Carlo as to deterministic transport calculations. Using T in any of its forms will avoid step size dependence. Using the best available T could be important in general purpose Monte Carlo codes, which are expected to give the correct answer to many different problems.
机译:目的:首先,为了表明散射功率T的精确公式,必须考虑高斯核与角分布的单个散射尾之间的竞争,这会影响高斯宽度的变化率并导致单次散射校正(SSC)。其次,要证明SSC要求T(x)是非局部的:除了感兴趣点的材料特性和能量之外,它还必须以某种方式取决于已经发生了多少多次散射。第三,在回顾了五个先前的公式(三个局部和两个非局部)之后,得出了改进的“微分莫里尔”公式T(dM)。最后,通过研究一些实际案例来研究何时实际需要精确的T公式。方法:我们首先采用Moliere / Fano / Hanson(theta2)的数值导数来找到真正的SSC。我们简化了质子的T(IC)公式(ICRU报告35),引入了一种新的依赖于材料的属性,即“散射长度” X(s),类似于辐射长度X(0)。然后,我们通过包括非局部校正因子fdM来使用T(IC)作为T(dM)的基础,该非局部校正因子借助Overas近似参数化单个散射校正。结果:提高的散射功率为T(dM)[三带] f(dM)(pv,p1v1)x(E(s)/ pv)(2)1 / X(s),其中fdM 0.5244 + 0.1975 lg(1 -(pv / p1v1)2)+0.2320 lg(pv)-0.0098 lg(pv)lg(1-(pv / p1v1)2),P1v1(MeV)是质子动量和速度的初始乘积,pv相同在兴趣点上,E(s)= 15.0 MeV。由于fdM与材料无关,因此T(dM)易于计算并易于推广到混合板。结论:是否需要一个精确的T公式在很大程度上取决于眼前的问题。对于水中的光束扩散,T的六个公式中的五个给出了几乎相同的结果,这表明患者剂量计算对T不敏感。但是,铅中的光束扩散并非如此。相反,在Pb / Lexan /空气堆末端的预计均方根光束宽度类似于T在无源光束扩展系统中的上游调制器一样,对T敏感。在这种情况下,简单的实验可以区分所有讨论的六个公式中的两个。散射能力对确定性输运计算的适用程度与蒙特卡洛相同。以任何形式使用T将避免步长依赖性。在通用的蒙特卡洛代码中,使用最佳可用的T可能很重要,它有望为许多不同的问题提供正确的答案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号