首页> 外文期刊>Medical Physics >Modeling lung deformation: A combined deformable image registration method with spatially varying Young's modulus estimates
【24h】

Modeling lung deformation: A combined deformable image registration method with spatially varying Young's modulus estimates

机译:建模肺部变形:具有空间变化杨氏模量估计值的组合可变形图像配准方法

获取原文
获取原文并翻译 | 示例
           

摘要

Purpose: Respiratory motion introduces uncertainties in tumor location and lung deformation, which often results in difficulties calculating dose distributions in thoracic radiation therapy. Deformable image registration (DIR) has ability to describe respiratory-induced lung deformation, with which the radiotherapy techniques can deliver high dose to tumors while reducing radiation in surrounding normal tissue. The authors' goal is to propose a DIR method to overcome two main challenges of the previous biomechanical model for lung deformation, i.e., the requirement of precise boundary conditions and the lack of elasticity distribution. Methods: As opposed to typical methods in biomechanical modeling, the authors' method assumes that lung tissue is inhomogeneous. The authors thus propose a DIR method combining a varying intensity flow (VF) block-matching algorithm with the finite element method (FEM) for lung deformation from end-expiratory phase to end-inspiratory phase. Specifically, the lung deformation is formulated as a stress-strain problem, for which the boundary conditions are obtained from the VF block-matching algorithm and the element specific Young's modulus distribution is estimated by solving an optimization problem with a quasi-Newton method. The authors measure the spatial accuracy of their nonuniform model as well as a standard uniform model by applying both methods to four-dimensional computed tomography images of six patients. The spatial errors produced by the registrations are computed using large numbers (>1000) of expert-determined landmark point pairs. Results: In right-left, anterior-posterior, and superior-inferior directions, the mean errors (standard deviation) produced by the standard uniform FEM model are 1.42(1.42), 1.06(1.05), and 1.98(2.10) mm whereas the authors' proposed nonuniform model reduces these errors to 0.59(0.61), 0.52(0.51), and 0.78(0.89) mm. The overall 3D mean errors are 3.05(2.36) and 1.30(0.97) mm for the uniform and nonuniform models, respectively. Conclusions: The results indicate that the proposed nonuniform model can simulate patient-specific and position-specific lung deformation via spatially varying Young's modulus estimates, which improves registration accuracy compared to the uniform model and is therefore a more suitable description of lung deformation.
机译:目的:呼吸运动会导致肿瘤位置和肺部变形的不确定性,这通常导致在胸腔放射治疗中难以计算剂量分布。可变形图像配准(DIR)具有描述呼吸诱发的肺部变形的能力,借助这种技术,放射治疗技术可以向肿瘤输送高剂量,同时减少周围正常组织的辐射。作者的目的是提出一种DIR方法,以克服先前的肺部变形生物力学模型的两个主要挑战,即要求精确的边界条件和缺乏弹性分布。方法:与生物力学建模中的典型方法相反,作者的方法假设肺组织不均匀。因此,作者提出了一种DIR方法,该方法将变化强度流(VF)块匹配算法与有限元方法(FEM)结合起来,用于从呼气末期到吸气末期的肺部变形。具体而言,将肺变形公式化为应力应变问题,通过VF块匹配算法获得边界条件,并通过使用拟牛顿法求解最优化问题来估算元素特定的杨氏模量分布。作者通过将这两种方法应用于六位患者的四维计算机断层扫描图像,来测量其非均匀模型和标准均匀模型的空间准确性。使用大量(> 1000)专家确定的地标点对来计算注册产生的空间误差。结果:在左右方向,前后方向和上下方向上,标准均匀FEM模型产生的平均误差(标准偏差)为1.42(1.42),1.06(1.05)和1.98(2.10)mm,而作者提出的非均匀模型将这些误差减小到0.59(0.61),0.52(0.51)和0.78(0.89)mm。对于均匀模型和非均匀模型,总体3D平均误差分别为3.05(2.36)和1.30(0.97)mm。结论:结果表明,所提出的非均匀模型可以通过空间变化的杨氏模量估计值模拟特定患者和特定位置的肺部变形,与统一模型相比,可以提高配准准确性,因此更适合描述肺部变形。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号