首页> 外文期刊>Medical Physics >Modeling lung deformation: A combined deformable image registration method with spatially varying Young's modulus estimates
【24h】

Modeling lung deformation: A combined deformable image registration method with spatially varying Young's modulus estimates

机译:肺部变形模型:具有空间变化的杨氏模量估计的组合可变形图像配准法

获取原文
获取原文并翻译 | 示例
           

摘要

Purpose: Respiratory motion introduces uncertainties in tumor location and lung deformation, which often results in difficulties calculating dose distributions in thoracic radiation therapy. Deformable image registration (DIR) has ability to describe respiratory-induced lung deformation, with which the radiotherapy techniques can deliver high dose to tumors while reducing radiation in surrounding normal tissue. The authors' goal is to propose a DIR method to overcome two main challenges of the previous biomechanical model for lung deformation, i.e., the requirement of precise boundary conditions and the lack of elasticity distribution. Methods: As opposed to typical methods in biomechanical modeling, the authors' method assumes that lung tissue is inhomogeneous. The authors thus propose a DIR method combining a varying intensity flow (VF) block-matching algorithm with the finite element method (FEM) for lung deformation from end-expiratory phase to end-inspiratory phase. Specifically, the lung deformation is formulated as a stress-strain problem, for which the boundary conditions are obtained from the VF block-matching algorithm and the element specific Young's modulus distribution is estimated by solving an optimization problem with a quasi-Newton method. The authors measure the spatial accuracy of their nonuniform model as well as a standard uniform model by applying both methods to four-dimensional computed tomography images of six patients. The spatial errors produced by the registrations are computed using large numbers (>1000) of expert-determined landmark point pairs. Results: In right-left, anterior-posterior, and superior-inferior directions, the mean errors (standard deviation) produced by the standard uniform FEM model are 1.42(1.42), 1.06(1.05), and 1.98(2.10) mm whereas the authors' proposed nonuniform model reduces these errors to 0.59(0.61), 0.52(0.51), and 0.78(0.89) mm. The overall 3D mean errors are 3.05(2.36) and 1.30(0.97) mm for the uniform and nonuniform models, respectively. Conclusions: The results indicate that the proposed nonuniform model can simulate patient-specific and position-specific lung deformation via spatially varying Young's modulus estimates, which improves registration accuracy compared to the uniform model and is therefore a more suitable description of lung deformation.
机译:目的:呼吸动作引入肿瘤位置和肺变形的不确定性,这导致困难计算胸部放射治疗剂量分布。可变形的图像配准(DIR)具有描述呼吸诱导的肺变形的能力,其中放射治疗技术可以将高剂量递送至肿瘤,同时减少围绕正常组织的辐射。作者的目标是提出一种DIR方法来克服先前生物力学模型的两个主要挑战,即肺变形,即精确边界条件的要求和缺乏弹性分布。方法:与生物力学建模中的典型方法相反,作者的方法假定肺组织不均匀。因此,作者提出了一种DIR方法,将不同强度流(VF)块匹配算法与有限元方法(FEM)组合,用于从终端到期相到终端吸气相的肺变形。具体地,将肺部变形配制成应力 - 应变问题,其中从VF块匹配算法获得边界条件,并通过用Quasi-Newton方法解决优化问题来估计特定的杨氏模量分布。作者通过将方法应用于六名患者的四维计算断层扫描图像来测量其非均匀模型的空间精度以及标准均匀模型。注册产生的空间错误是使用大量(> 1000)的专家确定的地标点对计算的。结果:在左右后,前后和优越的下方,标准均匀有限元模型产生的平均误差(标准偏差)为1.42(1.42),1.06(1.05)和1.98(2.10)mm,而作者提出的非均匀模型将这些误差降至0.59(0.61),0.52(0.51)和0.78(0.89)mm。对于均匀和非均匀型号,总体3D平均误差分别为3.05(2.36)和1.30(0.97)mm。结论:结果表明,所提出的非均匀模型可以通过空间不同的杨氏模量估计来模拟患者特异性和特异性肺变形,从而提高与均匀模型相比的登记精度,因此更适当地描述肺变形。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号