首页> 外文期刊>Medical Physics >Effects of Hounsfield number conversion on CT based proton Monte Carlo dose calculations.
【24h】

Effects of Hounsfield number conversion on CT based proton Monte Carlo dose calculations.

机译:霍恩斯菲尔德数转换对基于CT的质子蒙特卡洛剂量计算的影响。

获取原文
获取原文并翻译 | 示例
       

摘要

The Monte Carlo method provides the most accurate dose calculations on a patient computed tomography (CT) geometry. The increase in accuracy is, at least in part, due to the fact that instead of treating human tissues as water of various densities as in analytical algorithms, the Monte Carlo method allows human tissues to be characterized by elemental composition and mass density, and hence allows the accurate consideration of all relevant electromagnetic and nuclear interactions. On the other hand, the algorithm to convert CT Hounsfield numbers to tissue materials for Monte Carlo dose calculation introduces uncertainties. There is not a simple one to one correspondence between Hounsfield numbers and tissue materials. To investigate the effects of Hounsfield number conversion for proton Monte Carlo dose calculations, clinical proton treatment plans were simulated using the Geant4 Monte Carlo code. Three Hounsfield number to material conversion methods were studied. The results were compared in forms ofdose volume histograms of gross tumor volume and clinical target volume. The differences found are generally small but can be dosimetrically significant. Further, different methods may cause deviations in the predicted proton beam range in particular for deep proton fields. Typically, slight discrepancies in mass density assignments play only a minor role in the target region, whereas more significant effects are caused by different assignments in elemental compositions. In the presence of large tissue inhomogeneities, for head and neck treatments, treatment planning decisions could be affected by these differences because of deviations in the predicted tumor coverage. Outside the target area, differences in elemental composition and mass density assignments both may play a role. This can lead to pronounced effects for organs at risk, in particular in the spread-out Bragg peak penumbra or distal regions. In addition, the significance of the elemental composition effect (dose to water vs. dose to tissue) is tissue-type dependent and is also affected by nuclear reactions.
机译:蒙特卡洛方法可在患者计算机断层扫描(CT)几何形状上提供最准确的剂量计算。准确度的提高至少部分是由于以下事实:蒙特卡罗方法不是像分析算法那样将人体组织视为各种密度的水,而是使人体组织的特征在于元素组成和质量密度,因此可以准确考虑所有相关的电磁和核相互作用。另一方面,将CT霍恩斯菲尔德数转换为组织材料以进行蒙特卡洛剂量计算的算法引入了不确定性。霍恩斯菲尔德数和组织材料之间没有简单的一对一对应关系。为了研究霍恩斯菲尔德数转换对质子蒙特卡洛剂量计算的影响,使用Geant4蒙特卡洛代码模拟了临床质子治疗计划。研究了三种Hounsfield数到材料的转换方法。以总肿瘤体积和临床目标体积的剂量体积直方图的形式比较结果。所发现的差异通常很小,但在剂量上可能是显着的。此外,特别是对于深质子场,不同的方法可能会导致预测的质子束范围出现偏差。通常,质量密度分配中的细微差异仅在目标区域中发挥较小作用,而更显着的效果是由元素组成中的不同分配引起的。在存在较大的组织不均匀性的情况下,对于头颈部治疗,由于预测的肿瘤覆盖率存在偏差,治疗计划的决策可能会受到这些差异的影响。在目标区域之外,元素组成和质量密度分配的差异都可能起作用。这可能会对有风险的器官产生明显的影响,特别是在散布的布拉格峰半影或远端区域。另外,元素组成效应的重要性(水剂量与组织剂量)取决于组织类型,并且还受核反应影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号