首页> 外文期刊>Medical Physics >Design of a fast multileaf collimator for radiobiological optimized IMRT with scanned beams of photons, electrons, and light ions.
【24h】

Design of a fast multileaf collimator for radiobiological optimized IMRT with scanned beams of photons, electrons, and light ions.

机译:快速多叶准直仪的设计,用于放射生物学优化的IMRT,具有光子,电子和光离子的扫描束。

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Intensity modulated radiation therapy is rapidly becoming the treatment of choice for most tumors with respect to minimizing damage to the normal tissues and maximizing tumor control. Today, intensity modulated beams are most commonly delivered using segmental multileaf collimation, although an increasing number of radiation therapy departments are employing dynamic multileaf collimation. The irradiation time using dynamic multileaf collimation depends strongly on the nature of the desired dose distribution, and it is difficult to reduce this time to less than the sum of the irradiation times for all individual peak heights using dynamic leaf collimation [Svensson et al., Phys. Med. Biol. 39, 37-61 (1994)]. Therefore, the intensity modulation will considerably increase the total treatment time. A more cost-effective procedure for rapid intensity modulation is using narrow scanned photon, electron, and light ion beams in combination with fast multileaf collimator penumbra trimming. With this approach, the irradiation time is largely independent of the complexity of the desired intensity distribution and, in the case of photon beams, may even be shorter than with uniform beams. The intensity modulation is achieved primarily by scanning of a narrow elementary photon pencil beam generated by directing a narrow well focused high energy electron beam onto a thin bremsstrahlung target. In the present study, the design of a fast low-weight multileaf collimator that is capable of further sharpening the penumbra at the edge of the elementary scanned beam has been simulated, in order to minimize the dose or radiation response of healthy tissues. In the case of photon beams, such a multileaf collimator can be placed relatively close to the bremsstrahlung target to minimize its size. It can also be flat and thin, i.e., only 15-25 mm thick in the direction of the beam with edges made of tungsten or preferably osmium to optimize the sharpening of the penumbra. The low height of the collimator will minimize edge scatter from glancing incidence. The major portions of the collimator leafs can then be made of steel or even aluminum, so that the total weight of the multileaf collimator will be as low as 10 kg, which may even allow high-speed collimation in real time in synchrony with organ movements. To demonstrate the efficiency of this collimator design in combination with pencil beam scanning, optimal radiobiological treatments of an advanced cervix cancer were simulated. Different geometrical collimator designs were tested for bremsstrahlung, electron, and light ion beams. With a 10 mm half-width elementary scanned photon beam and a steel collimator with tungsten edges, it was possible to make as effective treatments as obtained with intensity modulated beams of full resolution, i.e., here 5 mm resolution in the fluence map. In combination with narrow pencil beam scanning, such a collimator may provide ideal delivery of photons, electrons, or light ions for radiation therapy synchronized to breathing and other organ motions.These high-energy photon and light ion beams may allow three-dimensional in vivo verification of delivery and thereby clinical implementation of the BioArt approach using Biologically Optimized three-dimensional in vivo predictive Assay based adaptive Radiation Therapy [Brahme, Acta Oncol. 42, 123-126 (2003)].
机译:就最小化对正常组织的损害和最大化肿瘤控制而言,强度调制放射疗法正迅速成为大多数肿瘤的治疗选择。如今,尽管越来越多的放射治疗部门正在采用动态多叶准直技术,但强度调制光束最常使用分段多叶准直技术传送。使用动态多叶准直的照射时间很大程度上取决于所需剂量分布的性质,并且很难将其缩短到小于使用动态叶片准直的所有单个峰高的照射时间之和[Svensson等,物理中生物学39,37-61(1994)]。因此,强度调制将大大增加总治疗时间。快速强度调制的一种更具成本效益的过程是将窄扫描光子,电子和光离子束与快速多叶准直仪半影修剪配合使用。通过这种方法,照射时间在很大程度上与所需强度分布的复杂度无关,并且在光子束的情况下,其照射时间甚至可能短于均匀束的照射时间。强度调制主要是通过扫描窄的基本光子笔形束来实现的,该束是通过将窄的聚焦良好的高能电子束导向薄的致靶而生成的。在本研究中,为了使健康组织的剂量或辐射响应最小化,已经模拟了一种快速轻巧的多叶准直器的设计,该准直器能够进一步使基本扫描光束边缘的半影锐化。在光子束的情况下,可以将这种多叶准直仪放置在相对靠近the致目标的位置,以使其尺寸最小。它也可以是平坦且薄的,即在光束方向上只有15-25mm厚,其边缘由钨或优选由made制成,以优化半影的锐化。准直器的低高度将使扫射入射的边缘散射最小化。然后,准直器叶片的主要部分可以由钢或什至由铝制成,因此多叶准直器的总重量将低至10 kg,甚至可以与器官运动同步地进行实时高速准直。 。为了证明这种准直仪设计与笔形束扫描相结合的效率,模拟了晚期宫颈癌的最佳放射生物学治疗方法。测试了不同的几何准直仪设计的致辐射,电子和轻离子束。使用10毫米半宽的基本扫描光子束和带有钨边的钢准直仪,可以像使用全分辨率强度调制光束(即在注量图中的5毫米分辨率)进行有效处理一样。这种准直器与窄束光束扫描相结合,可以提供理想的光子,电子或光离子传输,用于与呼吸和其他器官运动同步的放射治疗。这些高能光子和光离子束可以在体内进行三维扫描使用生物优化的三维体内预测分析为基础的适应性放射治疗[Brahme,Acta Oncol。 42,123-126(2003)]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号