首页> 外文期刊>Medical Physics >Magnetic shielding investigation for a 6 MV in-line linac within the parallel configuration of a linac-MR system
【24h】

Magnetic shielding investigation for a 6 MV in-line linac within the parallel configuration of a linac-MR system

机译:在直线加速器-MR系统的并行配置中对6 MV串联直线加速器的磁屏蔽研究

获取原文
获取原文并翻译 | 示例
           

摘要

Purpose: In our current linac-magnetic resonance (MR) design, a 6 MV in-line linac is placed along the central axis of the MR's magnet where the MR's fringe magnetic fields are parallel to the overall electron trajectories in the linac waveguide. Our previous study of this configuration comprising a linac-MR SAD of 100 cm and a 0.5 T superconducting (open, split) MR imager. It showed the presence of longitudinal magnetic fields of 0.011 T at the electron gun, which caused a reduction in target current to 84 of nominal. In this study, passive and active magnetic shielding was investigated to recover the linac output losses caused by magnetic deflections of electron trajectories in the linac within a parallel linac-MR configuration. Methods: Magnetic materials and complex shield structures were used in a 3D finite element method (FEM) magnetic field model, which emulated the fringe magnetic fields of the MR imagers. The effects of passive magnetic shielding was studied by surrounding the electron gun and its casing with a series of capped steel cylinders of various inner lengths (26.5-306.5 mm) and thicknesses (0.75-15 mm) in the presence of the fringe magnetic fields from a commercial MR imager. In addition, the effects of a shield of fixed length (146.5 mm) with varying thicknesses were studied against a series of larger homogeneous magnetic fields (0-0.2 T). The effects of active magnetic shielding were studied by adding current loops around the electron gun and its casing. The loop currents, separation, and location were optimized to minimize the 0.011 T longitudinal magnetic fields in the electron gun. The magnetic field solutions from the FEM model were added to a validated linac simulation, consisting of a 3D electron gun (using OPERA-3d/scala) and 3D waveguide (using comsol Multiphysics and PARMELA) simulations. PARMELA's target current and output phase-space were analyzed to study the linac's output performance within the magnetic shields. Results: The FEM model above agreed within 1.5 with the manufacturer supplied fringe magnetic field isoline data. When passive magnetic shields are used, the target current is recoverable to greater than 99 of nominal for shield thicknesses greater than 0.75 mm. The optimized active shield which resulted in 100 target current recovery consists of two thin current rings 110 mm in diameter with 625 and 430 A-turns in each ring. With the length of the passive shield kept constant, the thickness of the shield had to be increased to achieve the same target current within the increased longitudinal magnetic fields. Conclusions: A 99 original target current is recovered with passive shield thicknesses 0.75 mm. An active shield consisting of two current rings of diameter of 110 mm with 625 and 430 A-turns fully recovers the loss that would have been caused by the magnetic fields. The minimal passive or active shielding requirements to essentially fully recover the current output of the linac in our parallel-configured linac-MR system have been determined and are easily achieved for practical implementation of the system.
机译:目的:在我们目前的直线加速器磁共振(MR)设计中,沿MR磁体的中心轴放置6 MV直线直线加速器,其中MR的边缘磁场与直线加速器波导中的整个电子轨迹平行。我们之前对这种配置的研究包括一个100 cm的直线加速器-SAD和一个0.5 T超导(开放式,分体式)MR成像器。它显示了电子枪处存在0.011 T的纵向磁场,这导致目标电流减小到标称电流的84。在这项研究中,对无源和有源磁屏蔽进行了研究,以恢复由线性直线加速器-MR配置中直线加速器中电子轨迹的磁偏转引起的直线加速器输出损耗。方法:在3D有限元方法(FEM)磁场模型中使用磁性材料和复杂的屏蔽结构,以模拟MR成像器的边缘磁场。在存在来自边缘磁场的边缘磁场的情况下,通过将电子枪及其外壳用一系列带盖的钢瓶包围起来,研究了无源磁屏蔽的效果,这些钢瓶的内部长度为(26.5-306.5 mm),厚度为(0.75-15 mm)。商业MR成像器。此外,还针对一系列较大的均匀磁场(0-0.2 T)研究了固定长度(146.5 mm),厚度不同的屏蔽罩的影响。通过在电子枪及其外壳周围增加电流回路来研究主动磁屏蔽的效果。优化了回路电流,间隔和位置,以最大程度地减小电子枪中的0.011 T纵向磁场。来自FEM模型的磁场解决方案已添加到经过验证的直线加速器仿真中,该直线加速器仿真包括3D电子枪(使用OPERA-3d / scala)和3D波导(使用comsol Multiphysics和PARMELA)仿真。分析了PARMELA的目标电流和输出相空间,以研究直线加速器在磁屏蔽罩内的输出性能。结果:上面的FEM模型与制造商提供的边缘磁场等值线数据在1.5范围内一致。当使用无源磁屏蔽时,对于大于0.75 mm的屏蔽,目标电流可恢复到大于标称值的99。经过优化的有源屏蔽可实现100个目标电流恢复,包括两个直径为110 mm的细电流环,每个环中分别具有625和430 A匝。在无源屏蔽的长度保持恒定的情况下,必须增加屏蔽的厚度,以在增加的纵向磁场内实现相同的目标电流。结论:使用0.75 mm的无源屏蔽层可以恢复到99个原始目标电流。有源屏蔽由两个直径为110 mm的电流环组成,分别具有625和430 A匝的匝数,可以完全弥补磁场造成的损耗。在我们的并行配置直线加速器-MR系统中,已经确定了基本完全恢复直线加速器电流输出的最小被动或主动屏蔽要求,并且对于系统的实际实施很容易实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号