...
首页> 外文期刊>Medical Physics >Automated treatment planning for a dedicated multi-source intracranial radiosurgery treatment unit using projected gradient and grassfire algorithms
【24h】

Automated treatment planning for a dedicated multi-source intracranial radiosurgery treatment unit using projected gradient and grassfire algorithms

机译:使用投影梯度和草火算法的专用多源颅内放射外科治疗单元的自动化治疗计划

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Purpose: The purpose of this work is to develop a framework to the inverse problem for radiosurgery treatment planning on the Gamma Knife ? Perfexion? (PFX) for intracranial targets. Methods: The approach taken in the present study consists of two parts. First, a hybrid grassfire and sphere-packing algorithm is used to obtain shot positions (isocenters) based on the geometry of the target to be treated. For the selected isocenters, a sector duration optimization (SDO) model is used to optimize the duration of radiation delivery from each collimator size from each individual source bank. The SDO model is solved using a projected gradient algorithm. This approach has been retrospectively tested on seven manually planned clinical cases (comprising 11 lesions) including acoustic neuromas and brain metastases. Results: In terms of conformity and organ-at-risk (OAR) sparing, the quality of plans achieved with the inverse planning approach were, on average, improved compared to the manually generated plans. The mean difference in conformity index between inverse and forward plans was -0.12 (range: -0.27 to 0.03) and 0.08 (range: 0.00-0.17) for classic and Paddick definitions, respectively, favoring the inverse plans. The mean difference in volume receiving the prescribed dose (V 100) between forward and inverse plans was 0.2 (range: -2.4 to 2.0). After plan renormalization for equivalent coverage (i.e., V 100), the mean difference in dose to 1 mm 3 of brainstem between forward and inverse plans was -0.24 Gy (range: -2.40 to 2.02 Gy) favoring the inverse plans. Beam-on time varied with the number of isocenters but for the most optimal plans was on average 33 min longer than manual plans (range: -17 to 91 min) when normalized to a calibration dose rate of 3.5 Gymin. In terms of algorithm performance, the isocenter selection for all the presented plans was performed in less than 3 s, while the SDO was performed in an average of 215 min. Conclusions: PFX inverse planning can be performed using geometric isocenter selection and mathematical modeling and optimization techniques. The obtained treatment plans all meet or exceed clinical guidelines while displaying high conformity.
机译:目的:这项工作的目的是为伽玛刀上放射外科治疗计划的反问题开发一个框架。情趣? (PFX)用于颅内目标。方法:本研究采用的方法包括两个部分。首先,基于待处理目标的几何形状,使用混合草火和球形填充算法来获得射击位置(等中心点)。对于选定的等中心点,使用扇区持续时间优化(SDO)模型来优化来自每个单独光源库的每种准直仪尺寸的辐射传输持续时间。使用投影梯度算法求解SDO模型。该方法已在包括听觉神经瘤和脑转移在内的7例人工计划的临床病例(包括11个病变)中进行了回顾性测试。结果:就合规性和风险器官保留(OAR)而言,与手动生成的计划相比,使用反向计划方法实现的计划的质量平均而言有所提高。逆向计划和向前计划之间的一致性指数的平均差分别为经典和Paddick定义的-0.12(范围:-0.27至0.03)和0.08(范围:0.00-0.17),这有利于逆向计划。正向计划和反向计划之间接受规定剂量(V 100)的体积平均差为0.2(范围:-2.4至2.0)。重新计划等效范围(即V 100)的计划后,正向计划和反向计划之间的脑干1 mm 3剂量的平均差为-0.24 Gy(范围:-2.40至2.02 Gy),有利于反向计划。束流开启时间随等中心点的数量而变化,但是当标准化到3.5 Gymin的校准剂量率时,最佳计划的平均时间比手动计划平均长33分钟(-17至91分钟)。就算法性能而言,所有提出的计划的等角点选择均在不到3秒的时间内完成,而SDO的平均执行时间为215分钟。结论:可以使用几何等中心点选择以及数学建模和优化技术来执行PFX逆向计划。所获得的治疗计划均符合或超过临床指南,同时显示出较高的一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号