首页> 外文期刊>Medical Physics >Fast compressed sensing-based CBCT reconstruction using Barzilai-Borwein formulation for application to on-line IGRT
【24h】

Fast compressed sensing-based CBCT reconstruction using Barzilai-Borwein formulation for application to on-line IGRT

机译:基于Barzilai-Borwein公式的基于快速压缩感知的CBCT重建,用于在线IGRT

获取原文
获取原文并翻译 | 示例
           

摘要

Purpose: Compressed sensing theory has enabled an accurate, low-dose cone-beam computed tomography (CBCT) reconstruction using a minimal number of noisy projections. However, the reconstruction time remains a significant challenge for practical implementation in the clinic. In this work, we propose a novel gradient projection algorithm, based on the Gradient-Projection-Barzilai- Borwein formulation (GP-BB), that handles the total variation (TV)-norm regularization-based least squares problem for the CBCT reconstruction in a highly efficient manner, with speed acceptable for routine use in the clinic. Methods: CBCT is reconstructed by minimizing an energy function consisting of a data fidelity term and a TV-norm regularization term. Both terms are simultaneously minimized by calculating the gradient projection of the energy function with the step size determined using an approximate Hessian calculation at each iteration, based on the Barzilai-Borwein formulation. To speed up the process, a multiresolution optimization is used. In addition, the entire algorithm was designed to run with a single graphics processing unit (GPU) card. To evaluate the performance, the Shepp-Logan numerical phantom, the CatPhan 600 physical phantom, and a clinically-treated head-and-neck patient were acquired from the TrueBeam? system (Varian Medical Systems, Palo Alto, CA). For each scan, in total, 364 projections were acquired in a 200° rotation. The imager has 1024×768 pixels with 0.388×0.388-mm resolution. This was down-sampled to 512×384 pixels with 0.776×0.776-mm resolution for reconstruction. Evenly spaced angles were subsampled and used for varying the number of projections for the image reconstruction. To assess the performance of our GP-BB algorithm, we have implemented and compared with three compressed sensing-type algorithms, the two of which are popular and published (forward-backward splitting techniques), and the other one with a basic line-search technique. In addition, the conventional Feldkamp-Davis-Kress (FDK) reconstruction of the clinical patient data is compared as well. Results: In comparison with the other compressed sensing-type algorithms, our algorithm showed convergence in ≤30 iterations whereas other published algorithms need at least 50 iterations in order to reconstruct the Shepp-Logan phantom image. With the CatPhan phantom, the GP-BB algorithm achieved a clinically-reasonable image with 40 projections in 12 iterations, in less than 12.6 s. This is at least an order of magnitude faster in reconstruction time compared with the most recent reports utilizing GPU technology given the same input projections. For the head-and-neck clinical scan, clinically-reasonable images were obtained from 120 projections in 34-78 s converging in 12-30 iterations. In this reconstruction range (i.e., 120 projections) the image quality is visually similar to or better than the conventional FDK reconstructed images using 364 projections. This represents a dose reduction of nearly 67% (120364 projections) while maintaining a reasonable speed in clinical implementation. Conclusions: In this paper, we proposed a novel, fast, low-dose CBCT reconstruction algorithm using the Barzilai-Borwein step-size calculation. A clinically viable head-and-neck image can be obtained within ~34-78 s while simultaneously cutting the dose by approximately 67%. This makes our GP-BB algorithm potentially useful in an on-line image-guided radiation therapy (IGRT).
机译:目的:压缩传感理论已经实现了使用最少数量的噪声投影的精确,低剂量锥形束计算机断层扫描(CBCT)重建。但是,重建时间对于临床实际实施仍然是一个重大挑战。在这项工作中,我们提出了一种基于梯度投影Barzilai-Borwein公式(GP-BB)的新颖的梯度投影算法,该算法可处理基于总变分(TV)-范数正则化的最小二乘问题,用于CBCT重建。一种高效的方式,其速度在临床常规使用中是可以接受的。方法:通过最小化由数据保真度项和TV规范化项组成的能量函数来重建CBCT。通过基于Barzilai-Borwein公式在每次迭代中使用近似Hessian计算确定的步长来计算能量函数的梯度投影,从而同时最小化两个项。为了加快过程,使用了多分辨率优化。另外,整个算法被设计为与单个图形处理单元(GPU)卡一起运行。为了评估性能,从TrueBeam购买了Shepp-Logan数字体模,CatPhan 600物理体模以及经过临床治疗的头颈患者。系统(瓦里安医疗系统,加利福尼亚州帕洛阿尔托)。对于每次扫描,以200°旋转总计获取364个投影。成像器具有1024×768像素,分辨率为0.388×0.388-mm。将其下采样至分辨率为0.776×0.776-mm的512×384像素以进行重建。对均匀间隔的角度进行二次采样,并将其用于更改图像重建的投影数量。为了评估我们的GP-BB算法的性能,我们实施了三种压缩感应类型算法并将其与三种压缩感知类型算法进行比较,其中两种流行且已发布(向前-向后拆分技术),另一种具有基本的线性搜索技术。另外,还比较了临床患者数据的常规Feldkamp-Davis-Kress(FDK)重建。结果:与其他压缩感应类型算法相比,我们的算法显示出≤30次迭代的收敛性,而其他已发布的算法至少需要进行50次迭代才能重建Shepp-Logan幻像。使用CatPhan幻像,GP-BB算法在不到12.6 s的时间内进行了12次迭代,具有40个投影的临床合理图像。与在给定相同输入投影的情况下,使用GPU技术的最新报告相比,重建时间至少快了一个数量级。对于头颈临床扫描,从34到78 s内的120个投影中获得12到30次迭代收敛的临床合理图像。在该重建范围(即120个投影)中,图像质量在视觉上类似于或优于使用364个投影的常规FDK重建图像。这表示剂量减少了近67%(120364个预测),同时在临床实施中保持了合理的速度。结论:在本文中,我们提出了一种新颖的,使用Barzilai-Borwein步长计算的低剂量CBCT重建算法。可以在约34-78 s内获得临床可行的头颈影像,同时将剂量减少约67%。这使得我们的GP-BB算法在在线图像引导放射治疗(IGRT)中可能有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号