...
首页> 外文期刊>Free Radical Biology and Medicine: The Official Journal of the Oxygen Society >Mitochondrial aconitase reaction with nitric oxide, S-nitrosoglutathione, and peroxynitrite: mechanisms and relative contributions to aconitase inactivation.
【24h】

Mitochondrial aconitase reaction with nitric oxide, S-nitrosoglutathione, and peroxynitrite: mechanisms and relative contributions to aconitase inactivation.

机译:线粒体乌头酸酶与一氧化氮,S-亚硝基谷胱甘肽和过氧亚硝酸盐的反应:乌头酸酶失活的机制和相对作用。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Using highly purified recombinant mitochondrial aconitase, we determined the kinetics and mechanisms of inactivation mediated by nitric oxide (*NO), nitrosoglutathione (GSNO), and peroxynitrite (ONOO(-)). High *NO concentrations are required to inhibit resting aconitase. Brief *NO exposures led to a reversible inhibition competitive with isocitrate (K(I)=35 microM). Subsequently, an irreversible inactivation (0.65 M(-1) s(-1)) was observed. Irreversible inactivation was mediated by GSNO also, both in the absence and in the presence of substrates (0.23 M(-1) s(-1)). Peroxynitrite reacted with the [4Fe-4S] cluster, yielding the inactive [3Fe-4S] enzyme (1.1 x 10(5) M(-1) s(-1)). Carbon dioxide enhanced ONOO(-)-dependent inactivation via reaction of CO(3)*(-) with the [4Fe-4S] cluster (3 x 10(8) M(-1) s(-1)). Peroxynitrite also induced m-aconitase tyrosine nitration but this reaction did not contribute to enzyme inactivation. Computational modeling of aconitase inactivation by O(2)*(-) and *NO revealed that, when NO is produced and readily consumed, measuring the amount of active aconitase remains a sensitive method to detect variations in O(2)*(-) production in cells but, when cells are exposed to high concentrations of NO, aconitase inactivation does not exclusively reflect changes in rates of O(2)*(-) production. In the latter case, extents of aconitase inactivation reflect the formation of secondary reactive species, specifically ONOO(-) and CO(3)*(-), which also mediate m-aconitase tyrosine nitration, a footprint of reactive *NO-derived species.
机译:使用高度纯化的重组线粒体乌头酸酶,我们确定了由一氧化氮(* NO),亚硝基谷胱甘肽(GSNO)和过氧亚硝酸盐(ONOO(-))介导的失活动力学和机理。需要高* NO浓度来抑制静止乌头酸酶。简要*没有暴露导致可逆抑制与异柠檬酸竞争(K(I)= 35 microM)。随后,观察到不可逆的失活(0.65 M(-1)s(-1))。在不存在和存在底物(0.23 M(-1)s(-1))的情况下,GSNO也可介导不可逆灭活。过氧亚硝酸盐与[4Fe-4S]簇反应,产生无活性的[3Fe-4S]酶(1.1 x 10(5)M(-1)s(-1)。二氧化碳通过[4Fe-4S]簇(3 x 10(8)M(-1)s(-1))与CO(3)*(-)反应增强了ONOO(-)依赖性失活。过氧亚硝酸盐也诱导间-α-α-酪氨酸酪氨酸硝化,但该反应并未导致酶失活。通过O(2)*(-)和* NO进行乌头酸酶失活的计算模型表明,当产生NO并容易消耗时,测量活性乌头酸酶的量仍然是检测O(2)*(-)变异的灵敏方法。细胞暴露于高浓度的NO中,但是当细胞暴露于高浓度的NO时,乌头酸酶的失活并不仅仅反映了O(2)*(-)产生速率的变化。在后一种情况下,乌头酸酶失活的程度反映了次级反应性物种的形成,特别是ONOO(-)和CO(3)*(-),它们也介导了间位氨基酸的酪氨酸硝化作用,这是反应性* NO衍生物种的足迹。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号