...
首页> 外文期刊>Medical image analysis >Body-wide hierarchical fuzzy modeling, recognition, and delineation of anatomy in medical images
【24h】

Body-wide hierarchical fuzzy modeling, recognition, and delineation of anatomy in medical images

机译:全身分层的模糊建模,医学图像中的解剖结构识别和描绘

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

To make Quantitative Radiology (QR) a reality in radiological practice, computerized body-wide Automatic Anatomy Recognition (AAR) becomes essential. With the goal of building a general AAR system that is not tied to any specific organ system, body region, or image modality, this paper presents an AAR methodology for localizing and delineating all major organs in different body regions based on fuzzy modeling ideas and a tight integration of fuzzy models with an Iterative Relative Fuzzy Connectedness (IRFC) delineation algorithm. The methodology consists of five main steps: (a) gathering image data for both building models and testing the AAR algorithms from patient image sets existing in our health system; (b) formulating precise definitions of each body region and organ and delineating them following these definitions; (c) building hierarchical fuzzy anatomy models of organs for each body region; (d) recognizing and locating organs in given images by employing the hierarchical models; and (e) delineating the organs following the hierarchy. In Step (c), we explicitly encode object size and positional relationships into the hierarchy and subsequently exploit this information in object recognition in Step (d) and delineation in Step (e). Modality-independent and dependent aspects are carefully separated in model encoding. At the model building stage, a learning process is carried out for rehearsing an optimal threshold-based object recognition method. The recognition process in Step (d) starts from large, well-defined objects and proceeds down the hierarchy in a global to local manner. A fuzzy model-based version of the IRFC algorithm is created by naturally integrating the fuzzy model constraints into the delineation algorithm. The AAR system is tested on three body regions - thorax (on CT), abdomen (on CT and MRI), and neck (on MRI and CT) - involving a total of over 35 organs and 130 data sets (the total used for model building and testing). The training and testing data sets are divided into equal size in all cases except for the neck. Overall the AAR method achieves a mean accuracy of about 2 voxels in localizing non-sparse blob-like objects and most sparse tubular objects. The delineation accuracy in terms of mean false positive and negative volume fractions is 2% and 8%, respectively, for non-sparse objects, and 5% and 15%, respectively, for sparse objects. The two object groups achieve mean boundary distance relative to ground truth of 0.9 and 1.5 voxels, respectively. Some sparse objects - venous system (in the thorax on CT), inferior vena cava (in the abdomen on CT), and mandible and naso-pharynx (in neck on MRI, but not on CT) - pose challenges at all levels, leading to poor recognition and/or delineation results. The AAR method fares quite favorably when compared with methods from the recent literature for liver, kidneys, and spleen on CT images. We conclude that separation of modality-independent from dependent aspects, organization of objects in a hierarchy, encoding of object relationship information explicitly into the hierarchy, optimal threshold-based recognition learning, and fuzzy model-based IRFC are effective concepts which allowed us to demonstrate the feasibility of a general AAR system that works in different body regions on a variety of organs and on different modalities.
机译:为了使定量放射学(QR)在放射实践中成为现实,计算机化的全身自动解剖识别(AAR)变得至关重要。为了建立不与任何特定器官系统,身体区域或图像形态相关联的通用AAR系统,本文提出了一种基于模糊建模思想和方法对不同身体区域中所有主要器官进行定位和描绘的AAR方法。模糊模型与迭代相对模糊连通性(IRFC)描绘算法的紧密集成。该方法包括五个主要步骤:(a)收集建筑模型的图像数据,并从我们卫生系统中现有的患者图像集中测试AAR算法; (b)为每个身体部位和器官制定精确的定义,并根据这些定义进行描述; (c)为每个身体部位建立器官的分层模糊解剖模型; (d)通过使用分层模型来识别和定位给定图像中的器官; (e)按照等级划分器官。在步骤(c)中,我们将对象的大小和位置关系显式编码到层次结构中,然后在步骤(d)的对象识别和步骤(e)的描绘中利用此信息。在模型编码中,与模式无关的方面和从属方面都经过仔细分离。在模型构建阶段,进行了学习过程,以练习基于阈值的最佳对象识别方法。步骤(d)中的识别过程从定义明确的大型对象开始,然后以全局到局部的方式向下进行层次结构。通过自然地将模糊模型约束整合到轮廓描述算法中来创建IRFC算法的基于模糊模型的版本。 AAR系统在三个身体部位进行了测试-胸部(在CT上),腹部(在CT和MRI上)和颈部(在MRI和CT上)-总共涉及超过35个器官和130个数据集(用于模型的总数)构建和测试)。除颈部外,所有情况下的训练和测试数据集均被分为相等的大小。总体而言,AAR方法在定位非稀疏斑点状物体和大多数稀疏管状物体时均达到约2个体素的平均精度。对于非稀疏物体,按平均虚假正负体积分数表示的描绘精度分别为2%和8%,对于稀疏物体,分别为5%和15%。这两个对象组相对于地面真值分别达到0.9和1.5体素的平均边界距离。一些稀疏的物体-静脉系统(在CT上的胸部),下腔静脉(在CT上的腹部)以及下颌和鼻咽(在MRI上为颈部,但在CT上不)-在各个层面上都构成挑战,导致识别和/或描绘结果不佳。与最新文献中有关CT图像上的肝脏,肾脏和脾脏的方法相比,AAR方法非常有利。我们得出结论,模态无关与依赖方面的分离,层次结构中对象的组织,对象关系信息的显式编码到层次结构中,基于最佳阈值的识别学习以及基于模糊模型的IRFC是有效的概念,这些使我们能够证明通用AAR系统在各种器官和不同方式下在不同身体部位工作的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号