...
首页> 外文期刊>The FASEB Journal >Mechanism of endocytic regulation of intestinal tight junction remodeling during nutrient starvation in jejunal IPEC-J2 cells
【24h】

Mechanism of endocytic regulation of intestinal tight junction remodeling during nutrient starvation in jejunal IPEC-J2 cells

机译:

获取原文
获取原文并翻译 | 示例
           

摘要

Intestinal epithelial cells are tightly bound by tight junction proteins (TJP) which are dynamic and sensitive to environmental stress. However, the role of the endocytic pathway in the regulation of TJP abundance and tight junction integrity during nutrient stress is poorly understood. Therefore, this study was conducted to investigate the regulation of TJP abundance during nutrient starvation and the role of the endocytic mechanism in this process. IPEC-J2 cells were subjected to nutrient starvation in Krebs-Ringer bicarbonate buffer (KRB) and abundance of TJP, an indication of tight junction remodeling, was characterized with RT-PCR, western blotting and immunofluorescence. Abundance of TJP was dynamically regulated by nutrient starvation. The protein levels of claudin-1, 3, and 4 were initially downregulated within the first 6 hours of starvation, and then, increased thereafter (P < .01). However, there was no change in occludin and ZO-1. Lysosome and proteasome inhibitors were used to determine the contribution of these protein degradation pathways to the TJP remodeling. Short-term starvation-induced degradation of claudin-1, 3, and 4 was found to be lysosome dependent. Specifically, the downregulation of claudin-3 and 4 was via a dynamin-dependent, but clathrin and caveolae independent, endocytic pathway and this downregulation was partly reversed by amino acids supplementation. Interestingly, the re-synthesis of TJP with prolonged starvation partly depended on proteasome function. Collectively, this study, for the first time, elucidated a major role for dynamin-dependent endocytosis of claudin-3 and 4 during nutrient stress in intestinal epithelial cells. Therefore, transient endocytosis inhibition may be a potential mechanism for preserving tight junction integrity and function in metabolic or pathological states such as inflammatory bowel disease that involves destruction of intestinal epithelial TJP.

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号