首页> 外文期刊>Biochemistry >Fourier Transform Infrared Difference Study of Tyrosineo Oxidation and Plastoquinone Q_A Reduction in Pfaotosystem II
【24h】

Fourier Transform Infrared Difference Study of Tyrosineo Oxidation and Plastoquinone Q_A Reduction in Pfaotosystem II

机译:Pfaotosystem II中酪氨酸氧化和醌醌Q_A还原的傅里叶变换红外差异研究

获取原文
获取原文并翻译 | 示例
           

摘要

Two redox active tyrosines are present in the homologous poiypeptides Dl and D2 of photo-system II (PS II). Tyrz (Dl-161) is involved in the electron transfer reactions resulting in oxygen evolution, while Tyr_D (D2-160) usually forms a dark-stable radical. In Mn -depleted PS II, Tyr_D~(centre dot) can be slowly reduced by exogenous reductants. Charge separation then results in the oxidation of Tyr_D and Tyrz and the reduction of the primary electron acceptor Q_A. The semiquinone Q_A~- can be reoxidized by oxidants like ferricyanide. In the present work, experimental conditions leading to the generation of pure Q_A~-/Q_A or Tyr_D~(centre dot)/Tyr_D FTIR difference spectra have been optimized. Therefore, single-turnover flashes or short illuminationswere performed on PS II samples in the presence of exogenous reductants or oxidants. The Q_A~- and Tyr_D~(centre dot) radicals were generated with high yield and with a lifetime of several seconds or minutes allowing averaging of FTIR difference spectrawith high signal to noise ratio. Both Q_A~- formation and contributions at the electron donor side of PS II were monitored by EPR spectroscopy. In PS II samples at pH 6 in the presence of PMS, NH_2OH, and DCMU, EPR measurements show that Q_A~- is formedwith high yield upon a l s illumination at 10 °C, while no radical from the electron donor side of PS II is detected. Therefore the Q_A~-/Q_A FTIR spectrum obtained in these conditions shows only vibrational changes due to Q_A reduction in PS II. In contrast, a similar spectrum was recently interpreted in terms of dominant contributions from Chl~+/Chl signals [MacDonald, G. M., Steenhuis, I. J., & Barry, B. A. (1995) J. Biol. Chem. 270, 8420-8428], although the contribution from the electron acceptorQA was not quantified. In particular, it is shown here that the large positive signal at 1478 cm~(-1) is due to the Q_A~- state and not to a Chl~+ mode. This band is not downshifted upon ~(15)N- labeling of spinach PS II membranes within the ±1 cm~(-1)accuracy of the method and is therefore tentatively assigned to the v(C***O) mode of the plastosemiquinone Q_A~-. Also unchanged upon ~(15)N-labeling, signals at 1644 and/or 1630 cm~(-1) are possible candidates for the v(C=O) mode(s) of neutral Q_A in PSII. The Tyr_D~(centre dot)/Tyr_D FTIR spectrum is recorded at 4 °C on Tris-washed PS II membranes from spinach at pH 6 in the presence of phosphate, formate, and ferricyanide. EPR experiments performed on these samples show that almost all Tyr_D~(centre dot) is formed upon a l s illumination at 4 °C and that Tyr_D~(centre dot) is then reduced within 12 min in the dark. No contributions from Tyr_Z~(centre dot) or Q_A~- are detected 2 s after illumination. It is thus possible to optimize experimental conditions to record the FTIR difference spectrum only due to Tyr_D photooxidation in PS II-enriched membranes of spinach. The Tyr_D~(centre dot)/Tyr_D FTIR spectrum is compared to a cresol~(centre dot)/cresol FTIR difference spectrum obtained by UV irradiation at 10 K of cresol at pH 8. The spectral analogies observed between the in vivo and in vitro spectra recorded either in H_2O or in D_2O suggest that IR modes of Tyr_D contribute at 1513 and 1252 cm~(-1). These frequencies are characteristic of a protonated tyrosine. A positive signal is observed at 1506 cm~(-1) for cresol~(centre dot) and at 1504 cm~(-1) for the Tyr_D~(centre dot) state. This suggests contribution of the Tyr_D~(centre dot) side chain at 1504 cm~(-1). A band at 1473 cm~(-1) was previously assigned to the v(CO) mode of Tyr_D~(centre dot) [MacDonald, G. M., Bixby, K. A., & Barry, B. A. (1993) Proc, Natl Acad. Sci. U.S.A. 90, 11024-11028]. In contrast, no positive signal is observed at 1473 cm~(-1) in the Tyr_D~(centre dot)/Tyr_D FTIR. difference spectrum presented here. The Tyr_D~(centre dot)/Tyr_D spectrum also shows vibrational changes from peptide groups and amino acid side chains which are modified upon Tyr_D~(centre dot) forma
机译:在光系统II(PS II)的同源多肽D1和D2中存在两种氧化还原活性酪氨酸。 Tyrz(Dl-161)参与了导致氧释放的电子转移反应,而Tyr_D(D2-160)通常形成暗稳定的自由基。在缺锰的PS II中,外源还原剂可缓慢降低Tyr_D〜(中心点)。电荷分离然后导致Tyr_D和Tyrz的氧化以及初级电子受体Q_A的还原。半醌Q_A〜-可以被铁氰化物等氧化剂再氧化。在目前的工作中,已经优化了产生纯Q_A〜-/ Q_A或Tyr_D〜(中心点)/ Tyr_D FTIR差异光谱的实验条件。因此,在存在外源性还原剂或氧化剂的情况下,对PS II样品进行了单周转闪光或短暂照明。 Q_A〜-和Tyr_D〜(中心点)自由基的产生具有很高的收率,并且具有数秒或数分钟的寿命,从而可以对具有高信噪比的FTIR差光谱进行平均。通过EPR光谱监测PS II的Q_A〜-形成和贡献。在PMS,NH_2OH和DCMU存在下,pH为6的PS II样品中,EPR测量表明,在10°C的光照下,高产率形成Q_A〜-,而未检测到PS II的电子供体侧有自由基。因此,在这些条件下获得的Q_A〜-/ Q_A FTIR谱仅显示由于PS II中Q_A减小而引起的振动变化。相反,最近根据Chl + / Chl信号的显性贡献解释了类似的谱[MacDonald,G.M.,Steenhuis,I.J。,&Barry,BA。(1995)J.Biol.Chem。,1987。化学270,8420-8428],尽管电子受体QA的贡献尚未量化。特别地,这里示出了在1478cm〜(-1)处的大正信号是由于Q_A〜-状态而不是由于Chl〜+模式引起的。在该方法的±1 cm〜(-1)精度范围内,菠菜PS II膜的〜(15)N-标记不会使该谱带降档,因此暂时将其分配给该谱带的v(C *** O)模式。质体醌Q_A〜-。在〜(15)N标记后也不变,在1644和/或1630 cm〜(-1)处的信号可能是PSII中中性Q_A的v(C = O)模式的候选。在磷酸盐,甲酸盐和铁氰化物存在下,于4°C在菠菜中用pHs 6在Tris洗涤过的PS II膜上记录Tyr_D〜(中心点)/ Tyr_D FTIR光谱。对这些样品进行的EPR实验表明,几乎所有的Tyr_D〜(中心点)都是在4°C的光照下形成的,然后在黑暗中12分钟内Tyr_D〜(中心点)被还原。照明后2秒钟未检测到Tyr_Z〜(中心点)或Q_A〜-的贡献。因此,有可能优化实验条件以仅由于富含PS II的菠菜中的Tyr_D光氧化作用而记录FTIR差异光谱。将Tyr_D〜(中心点)/ Tyr_D FTIR光谱与通过在pH 8的10 K甲酚中紫外线照射获得的cresol〜(中心点)/ Cresol FTIR差异光谱进行比较。在体内和体外观察到的光谱相似性在H_2O或D_2O中记录的光谱表明,Tyr_D的IR模式在1513和1252 cm〜(-1)处起作用。这些频率是质子化酪氨酸的特征。对于甲酚(中心点),在1506cm(-1)处观察到正信号,对于Tyr_D(中心点),在1504cm(-1)处观察到正信号。这表明Tyr_D〜(中心点)侧链在1504cm〜(-1)处的贡献。先前将1473 cm〜(-1)的波段分配给Tyr_D〜(中心点)的v(CO)模式[MacDonald,G. M.,Bixby,K. A.,&Barry,B.A.(1993)Proc,Natl Acad。科学美国90,11024-11028]。相反,在Tyr_D_(中心点)/ Tyr_D FTIR中,在1473 cm〜(-1)处未观察到正信号。此处显示的差异频谱。 Tyr_D〜(中心点)/ Tyr_D谱还显示了来自肽基和氨基酸侧链的振动变化,这些变化在Tyr_D〜(中心点)形式下被修饰

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号