...
首页> 外文期刊>Materials science in semiconductor processing >Mechanism and detection of poly gate leakage with nonvisual defects by voltage contrast inspection
【24h】

Mechanism and detection of poly gate leakage with nonvisual defects by voltage contrast inspection

机译:电压对比检查发现无视觉缺陷的多晶硅栅漏的机理及检测

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The research aims at nonvisual defects causing the poly gate leakage failure and the corresponding inline voltage-contrast (VC) inspection. Electron beam inspection (EBI) begins to be frequently used for scanning either SRAM or DRAM cell area in nano-scaled technologies. The research, furthermore, extends EBI to logical area of an ASIC product and proposes an inline detectable methodology for gate leakages. Extreme tiny and nonvisual residues could happen during gate etch processes by the step height between active area (AA) and shallow trench isolation (STI), and the tiny defects are difficult to be located even some of those did lead to chip probe (CP) test failure. The subsequent implant processes would punch through those tiny poly residues, make the residue being conductive, and finally electrons on the gate would leak to the ground through the residue. Those nonvisual residues act as bridges for gate leakages. EBI with designed positive charging modes was applied into the series of implement steps and found the leakage by a significant voltage contrast signal post the source/drain implantation. The bright VC of the gate poly implied the leakage electrons charging on the gate. A series of process experiments based on the model for reducing leakages was tested and quickly verified by the EBI in front end of the line. An optimal process integration condition was soon carried out with a significant chip yield enhancement. (C) 2016 Elsevier Ltd. All rights reserved.
机译:该研究针对导致多晶硅栅极泄漏故障的非视觉缺陷以及相应的在线电压对比(VC)检查。电子束检查(EBI)开始被广泛用于扫描纳米级技术中的SRAM或DRAM单元区域。此外,这项研究将EBI扩展到ASIC产品的逻辑领域,并提出了一种用于栅极泄漏的在线可检测方法。在栅极刻蚀过程中,由于有源区(AA)和浅沟槽隔离(STI)之间的台阶高度,可能会出现极小的微小且看不见的残留物,即使其中一些确实导致了芯片探针(CP)的情况,也很难发现这些微小的缺陷。测试失败。随后的注入工艺将穿透那些微小的多晶硅残基,使残基导电,最后,栅极上的电子将通过残基泄漏到地面。这些看不见的残留物充当了栅极泄漏的桥梁。具有设计的正充电模式的EBI被应用到一系列实施步骤中,并在源/漏注入后通过明显的电压对比信号发现了泄漏。栅极多晶硅的亮VC表示在栅极上充电的泄漏电子。 EBI在生产线前端对基于减少泄漏模型的一系列过程实验进行了测试,并迅速对其进行了验证。很快就实现了最佳工艺集成条件,并显着提高了芯片产量。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号