...
首页> 外文期刊>Mathematics and mechanics of solids: MMS >Analytical solution for the stress field around a hard spherical particle in a metal matrix composite incorporating size and finite volume effects
【24h】

Analytical solution for the stress field around a hard spherical particle in a metal matrix composite incorporating size and finite volume effects

机译:考虑尺寸和有限体积效应的金属基复合材料中硬球形颗粒周围应力场的解析解

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

An analytical solution is presented for the stress field around an elastic spherical particle embedded in a finite elastic-plastic metal matrix subjected to hydrostatic tension. The formulation is based on a strain gradient plasticity theory and a unit cell of finite dimensions, and the resulting solution incorporates the size and finite volume effects. The counterpart solutions based on classical elasticity and plasticity are reduced from the current solution, and the solution for that of an elastic spherical particle embedded in an infinitely large elastic-plastic matrix is obtained as a special case. The newly derived solution can capture the particle size effect and account for composites with both dilute and non-dilute particle distributions, unlike existing analytical models. The stress concentration factor on the particle/matrix interface, which depends on the particle size and volume fraction, is determined by directly applying the current solution. Numerical results quantitatively show that the stress concentration factor increases as the particle volume fraction increases and the strain-hardening level of the matrix material decreases. Also, these results reveal that the stress concentration factor decreases with decreasing particle size at the micron scale, thereby predicting the particle size effect.
机译:提出了一种解决方案,该解决方案是对嵌入在受流体静压力作用的有限弹塑性金属基质中的弹性球形颗粒周围的应力场进行分析的。该公式基于应变梯度可塑性理论和有限尺寸的晶胞,所得解决方案包含了尺寸和有限体积的影响。从目前的解决方案中减少了基于经典弹性和可塑性的对应解决方案,并作为特例获得了将弹性球形颗粒嵌入无限大的弹塑性矩阵中的解决方案。与现有的分析模型不同,新获得的解决方案可以捕获粒径效应并说明具有稀和非稀颗粒分布的复合材料。颗粒/基体界面上的应力集中系数取决于颗粒尺寸和体积分数,可通过直接施加当前溶液来确定。数值结果定量地表明,应力集中系数随颗粒体积分数的增加而增加,基体材料的应变硬化水平降低。同样,这些结果表明,应力集中系数随着微米级粒径的减小而减小,从而预测了粒径效应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号