...
首页> 外文期刊>Mechanics & Industry >Thermal effects of CO_2 capture by solid adsorbents: some approaches by IR image processing
【24h】

Thermal effects of CO_2 capture by solid adsorbents: some approaches by IR image processing

机译:固体吸附剂捕获CO_2的热效应:红外图像处理的一些方法

获取原文
获取原文并翻译 | 示例
           

摘要

Thanks to infrared thermography, we have studied the mechanisms of CO_2 capture by solid adsorbents (CO_2 capture via gas adsorption on various types of porous substrates) to better understand the physico-chemical mechanisms that control CO_2-surface interactions. In order to develop in the future an efficient process for post-combustion CO_2 capture, it is necessary to quantify the energy of adsorption of the gas on the adsorbent (exothermic process). The released heat (heat of adsorption) is a key parameter for the choice of materials and for the design of capture processes. Infrared thermography is used, at first approach, to detect the temperature fields on a thin-layer of adsorbent during CO_2 adsorption. An analytical heat transfer model was developed to evaluate the adsorption heat flux and to estimate, via an inverse technique, the heat of adsorption. The main originality of our method is to estimate heat losses directly from the heat generated during the adsorption process. Then, the estimated heat loss is taken for an a posteriori calculation of the adsorption heat flux. Finally, the heat of adsorption may be estimated. The interest in using infrared thermography is also its ability to quickly change the experimental setup, for example, to switch from the adsorbent thin-layer to the adsorbent bed configuration. We present the first results tempting to link the thin-layer data to the propagation speed of the thermal front in a millifluidics adsorption bed, also observed by IR thermography.
机译:借助红外热成像技术,我们研究了固体吸附剂捕获CO_2的机理(通过气体吸附在各种类型的多孔基质上捕获CO_2),以更好地理解控制CO_2与表面相互作用的物理化学机理。为了在将来发展用于燃烧后CO 2捕集的有效方法,有必要对气体在吸附剂上的吸附能量进行定量(放热过程)。释放的热量(吸附热)是材料选择和捕集工艺设计的关键参数。第一种方法是使用红外热像仪检测CO_2吸附过程中吸附剂薄层上的温度场。建立了一个分析传热模型,以评估吸附热通量并通过逆技术估算吸附热。我们方法的主要创意是直接从吸附过程中产生的热量估算热量损失。然后,将估计的热损失用于吸附热通量的后验计算。最后,可以估计吸附热。使用红外热成像的兴趣还在于它能够快速更改实验设置,例如从吸附剂薄层转换为吸附剂床配置。我们提出了将薄层数据与毫流体吸附床中的热锋面传播速度联系起来的第一个结果,这也可以通过红外热像仪观察到。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号