首页> 外文期刊>Mechanics of Composite Materials and Structures >Micromechanical bilinear behavior of composite lamina subjected to combined thermal and mechanical loadings
【24h】

Micromechanical bilinear behavior of composite lamina subjected to combined thermal and mechanical loadings

机译:热与机械载荷作用下复合材料薄板的微机械双线性行为

获取原文
获取原文并翻译 | 示例
           

摘要

The bilinear elastic degradation called the "knee" phenomenon, observed well in the transverse tensile stress-strain curves of some metal-based composites, is modeled through both a simplified three-phase cylindrical model and a hexagonal-arrayed unidirectional composite. The interphase is modeled by spring layers which account for continuity of tractions, but allow radial and circumferential displacement jumps across the interphase that are linearly related to the normal and tangential tractions. Even though constituent materials are in the elastic range all the way through, the possible low stiffness of the interphase and the residual stresses induced by uniform cooling yield bilinear elastic behavior in the stress-effective strain curves. However, perfect bonding or low stiffness in the interphase with no residual stresses creates a linear curve. The effects of interphase stiffness, fiber volume fraction, temperature change, and transverse tensile load on both the micro- and macro-thermomechanical behaviors of unidirectionally fiber-reinforced composites are analyzed numerically using the boundary-element method. These results are then compared to the elastic solutions of the three-phase model in a qualitative manner.
机译:在一些金属基复合材料的横向拉伸应力-应变曲线中可以很好地观察到称为“膝”现象的双线性弹性降解,该模型通过简化的三相圆柱模型和六边形排列的单向复合材料进行建模。中间相由弹簧层建模,这些弹簧层考虑了牵引力的连续性,但允许径向和周向位移跨过中间相,且与法向和切向牵引力线性相关。即使构成材料始终处于弹性范围内,由于均匀冷却而引起的相间可能的低刚度和残余应力也会在应力有效应变曲线中产生双线性弹性行为。但是,相间的完美结合或低刚度没有残余应力会产生线性曲线。使用边界元方法数值分析了相间刚度,纤维体积分数,温度变化和横向拉伸载荷对单向纤维增强复合材料的微观和宏观热力学行为的影响。然后,将这些结果以定性的方式与三相模型的弹性解进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号