...
首页> 外文期刊>Materials transactions >Effects of Pore Morphology and Bone Ingrowth on Mechanical Properties of Microporous Titanium as an Orthopaedic Implant Material
【24h】

Effects of Pore Morphology and Bone Ingrowth on Mechanical Properties of Microporous Titanium as an Orthopaedic Implant Material

机译:孔的形态和骨向内生长对骨科植入物微孔钛力学性能的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Successful bone formation which leads to functional osseointegration is determined by the local mechanical environment around bone-interfacing implants, In this work, a novel porous titanium material is developed and tested and then impact of porosity on mechanical properties as a function of bone ingrowth is studied numerically. A superplastic foaming technique is used to produce CP-Ti material with rounded, interconnected pores of 50 percent porosity; the pore size and morphology is particularly suitable for bone ingrowth. In order to understand the structure-property relations for this new material, a numerical simulation is performed to study the effect of the porous microstructure and bone ingrowth on the mechanical properties. Using ABAQUS. we create two-dimensional representative microstructures for fully porous samples, as well as samples with partial and full bone ingrowth. We then use the finite element method to predict the macroscopic mechanical properties of the foam, e.g., overall Young's modulus and yield stress, as well as the local stress and strain pattern of both the titanium foam and bone inclusions. The strain-stress curve, stress concentrations and stress shielding caused by the bone-implant modulus mismatch are examined for different microstructures in both elastic and plastic region. The results are compared with experimental data from the porous titanium samples. Based on the finite element predictions, bone ingrowth is predicted to dramatically reduce stress concentrations around the pores. It is shown that the morphology of the implants will influence both macroscopic properties (such as modulus) and localized behavior (such as stress concentrations). Therefore, these studies provide a methodology for the optimal design of porous titanium as an implant material.
机译:成功的骨形成导致功能性骨整合是由骨界面植入物周围的局部机械环境决定的。在这项工作中,开发并测试了一种新型的多孔钛材料,然后研究了孔隙度对机械性能随骨向内生长的影响数值上。超塑性发泡技术用于生产具有50%孔隙率的圆形互连孔的CP-Ti材料。孔径和形态特别适合骨骼向内生长。为了了解这种新材料的结构-特性关系,进行了数值模拟,以研究多孔微结构和骨向内生长对机械性能的影响。使用ABAQUS。我们为完全多孔的样品以及部分和全部骨向内生长的样品创建了二维代表性的微观结构。然后,我们使用有限元方法来预测泡沫的宏观机械性能,例如整体杨氏模量和屈服应力,以及钛泡沫和骨夹杂物的局部应力和应变模式。对于弹性和塑性区域中不同的微结构,检查了由骨-植入模量不匹配引起的应变-应力曲线,应力集中和应力屏蔽。将结果与多孔钛样品的实验数据进行比较。根据有限元预测,可以预测骨骼向内生长可以显着减少孔周围的应力集中。结果表明,植入物的形态会影响宏观性能(例如模量)和局部行为(例如应力集中)。因此,这些研究为多孔钛作为植入材料的最佳设计提供了一种方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号