...
首页> 外文期刊>Materials transactions >Tensile Strength Enhancement by Shortening Glass Fibers with Sub-Millimeter Length in Bulk Molding Polymer Compound
【24h】

Tensile Strength Enhancement by Shortening Glass Fibers with Sub-Millimeter Length in Bulk Molding Polymer Compound

机译:在短距离模制聚合物中,通过缩短亚毫米长度的玻璃纤维来增强拉伸强度

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Effects of short fiber with sub-millimeter length on tensile strain, ε_f and tensile strength, σ_f were investigated for a bulk molding compound (BMC) glass fiber reinforced polymer (GFRP) composite with 20 mass% E-short glass fibers. The ε_f and σ_f values of BMC-GFRP samples with 0.44 mm short fibers were almost 40 and 60% higher than that of BMC-GFRP samples with long fibers (3.2 and 6.4 mm in length), as well as more than 65 and 110% higher than that of the filled fiber free resin, respectively. The reduced fracture strain (ε_f/ε_f,6.4) and reduced tensile strength (σ_f/σ_f,6.4) as a function of the fiber end density, ρ_E (cm~(-3)) were expressed by the following equations with linear regression as (ε_f/ε_f,6.4 = 1.21 x 10~(-7)σ_E + 0.965) and (σ_f/σ_f,6.4 = 1.51 x 10~(-7) ρ_E + 0.998). Acoustic emission (AE) analysis detected microcracking was increased threefold by shortening the mean fiber length from 6.4 to 0.44 mm. Scanning electron microscopy (SEM) results showed increased fiber/matrix debonding at fiber ends and along fiber lengths in the 0.44 mm samples compared with that reported for 6.4 mm samples. The fiber debonding is thought to impart an internal strain field in the matrix surrounding each fiber resulting in volume expansion sites, hence compressive stress sites which absorb energy from an approaching crack tip front in the nearby vicinity halting the crack's advance. Therefore, more microcracks can be tolerated increasing fracture strain. Moreover, the critical crack length range for thermoset polymers was calculated to be approximately 0.50 < 2a_c < 5.0 mm from reported K_(IC) results in the literature, and is greater than the 0.44 mm mean fiber length. The probability of a microcrack propagating above 0.44mm before it encounters a matrix compressive site, therefore is reduced. Furthermore, increased microcracking in the vicinity of the main crack tip acts to reduce the main crack tip stress concentration. All of these serve to prevent crack propagation resulting in enhancement of fracture strain in the BMC-GFRP.
机译:研究了含有20质量%E-短玻璃纤维的块状模塑料(BMC)玻璃纤维增​​强聚合物(GFRP)复合材料的亚毫米长短纤维对拉伸应变ε_f和拉伸强度σ_f的影响。带有0.44 mm短纤维的BMC-GFRP样品的ε_f和σ_f值比带有长纤维(长度为3.2和6.4 mm)的BMC-GFRP样品的ε_f和σ_f值分别高出65%和110%,分别高40和60%。分别高于填充的无纤维树脂。断裂应变的降低(ε_f/ε_f,6.4)和拉伸强度的降低(σ_f/σ_f,6.4)是纤维端密度ρ_E(cm〜(-3))的函数,可通过以下方程进行线性回归: (ε_f/ε_f,6.4 = 1.21 x 10〜(-7)σ_E+ 0.965)和(σ_f/σ_f,6.4 = 1.51 x 10〜(-7)ρ_E+ 0.998)。通过将平均纤维长度从6.4毫米缩短到0.44毫米,声发射(AE)分析检测到的微裂纹增加了三倍。扫描电子显微镜(SEM)结果显示,与报道的6.4 mm样品相比,0.44 mm样品在纤维端部和沿纤维长度的纤维/基体剥离强度增加。认为纤维脱粘在围绕每根纤维的基质中赋予内部应变场,从而导致体积膨胀部位,因此压缩应力部位从附近附近的接近的裂纹尖端前沿吸收能量,从而阻止了裂纹的前进。因此,可以容许更多的微裂纹增加断裂应变。此外,根据文献中报道的K_(IC)结果,热固性聚合物的临界裂纹长度范围经计算约为0.50 <2a_c <5.0 mm,并且大于0.44 mm的平均纤维长度。因此,降低了微裂纹在遇到基体压缩点之前传播到0.44mm以上的可能性。此外,在主裂纹尖端附近增加的微裂纹起到减小主裂纹尖端应力集中的作用。所有这些都用于防止裂纹扩展,从而导致BMC-GFRP中断裂应变的增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号