首页> 外文期刊>Materials and Manufacturing Processes >Innovative Approaches in Physical Simulation and Modeling for Optimal Design and Processing of Advanced High Strength Steels
【24h】

Innovative Approaches in Physical Simulation and Modeling for Optimal Design and Processing of Advanced High Strength Steels

机译:物理模拟和建模的创新方法,用于高级高强度钢的最佳设计和加工

获取原文
获取原文并翻译 | 示例
       

摘要

Innovative approaches are necessitated through meticulous physical simulation and modeling for the evaluation and optimal design of the thermomechanically controlled processing (TMCP) of advanced high strength steels (AHSS). While microalloying of dual-phase (DP), the transformation induced plasticity (TRIP) steels have opened up new possibilities to achieve enhanced mechanical properties, proper contemplation of instantaneous strain hardening capability holds the key for optimized process design. Another example that merits mention is the estimation of real-time phase fractions as a function of heating rate and holding in the intercritical annealing of multiphase steels for optimized processing. In the case of direct quenching, a better understanding of the effect of composition on the phase transformation temperatures and hardenability is inevitably necessary for the manufacturing of low carbon bainitic/martensitic steels. Based on an ambitious experimental plan, new regression models have been developed for the start of bainite and martensite transformation temperature and also for the hardenability, as the standard approach to predict the hardenability using the method given in ASTM A255 standard was not very accurate for boron-containing steels. A novel processing route of developing submicron-grained microstructures by reversion annealing of cold-rolled metastable austenitic stainless steels has been investigated leading to the possibilities of excellent strength-ductility combinations. Literature data on the restoration behavior of twinning induced plasticity (TWIP) steels is scarce and proprietary and, hence, fresh efforts have been made to understand the static recrystallization behavior using physical simulation and modeling. Examples of some of the models and activities being pursued at the University of Oulu have been outlined in this article.
机译:通过精细的物理模拟和建模,需要创新的方法来评估和优化高级高强度钢(AHSS)的热机械控制工艺(TMCP)。虽然双相(DP)的微合金化,相变诱导塑性(TRIP)钢为实现增强的机械性能开辟了新的可能性,但对瞬时应变硬化能力的适当考虑是优化工艺设计的关键。值得一提的另一个示例是实时相分数的估算,该实时相分数是加热速率和多相钢的临界退火中保持率的函数,以优化工艺。在直接淬火的情况下,对低碳贝氏体/马氏体钢的制造不可避免地需要更好地理解组成对相变温度和淬透性的影响。根据一项雄心勃勃的实验计划,已经针对贝氏体和马氏体转变温度的开始以及淬透性开发了新的回归模型,因为使用ASTM A255标准中给出的方法预测淬透性的标准方法对硼不是很准确含钢。研究了通过冷轧亚稳态奥氏体不锈钢的回复退火来开发亚微米级晶粒组织的新工艺路线,从而提供了极好的强度-延展性组合的可能性。关于孪生感应塑性(TWIP)钢的恢复行为的文献数据是稀缺的和专有的,因此,人们进行了新的努力来使用物理模拟和建模来了解静态再结晶行为。本文概述了奥卢大学正在推行的某些模型和活动的示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号